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ABSTRACT 
This study explores the nature of the multi-robot control problem 

for social robots. It begins by modeling the overall structure of a 

human-robot team for social interactions, and implements it for 

specific application to dialog-based interactions. Operator activity 

during control of a social robot is studied. Customer satisfaction is 

proposed as an important metric for evaluating the performance of 

a human-robot team for social interactions with customers. Based 

on the modeling, fan-out of a social robot team can be calculated, 

and the performance of the team is estimated by simulation. A 

field trial was conducted in a shopping mall to demonstrate a 

successful deployment of social robots for a real-world 

application with ensured performance prior to installation using 

our modeling and simulation approach. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User Inter-

faces - Interaction styles; I.2.9 [Artificial Intelligence]: Robotics 

General Terms 
Design, Human Factors 

Keywords 
Human-robot interaction, modeling, simulation, social robots 

1. INTRODUCTION 
Research and development of social robots in human-robot 

interaction has been making rapid progress in recent years [1, 6, 9, 

17, 20, 21, 27]. Social robots have been placed in museums [2, 22, 

24, 26], reception areas [16], shopping malls [14, 15], and transit 

stations [12], providing valuable resources for social robot study. 

However, current technology is not mature enough to achieve a 

fully automatic robot in a real-world environment. A speech 

recognition system that performed with 92.5% accuracy in 75dBA 

noise [13] achieved only 21.3% accuracy in a real environment 

[23]. One practical approach to solving this problem is 

teleoperation, in which human perception and intelligence can 

fulfill the technology gap in automation. 

Teleoperation of multiple robots can be achieved by switching an 

operator’s attention among robots with partial autonomy, which 

improves system efficiency by enabling multiple robots to act 

simultaneously. However, the coordination between autonomy 

and operation is often difficult in real applications of social robots. 

How many robots can be deployed? How much effort should be 

expended on automation and how well must the operator perform? 

Previous studies didn’t address such issues, and deployment of 

social robots was often best-effort-based or ad-hoc, causing 

unnecessary time and effort for preparation or even failure of the 

robot team when performance couldn’t be estimated prior to 

deployment. 

Teleoperation of multiple robots is an active field of research for 

search-and-rescue and navigation, from which we can learn useful 

theories such as adjustable autonomy [4, 10], mixed initiative 

control [11], fan-out [18, 19] and metrics for robot team 

performance [3, 5]. However, apart from those applications, social 

robot study has unique features, such as low tolerance of 

customers to robot failure [14] and the special structure of social 

interactions [7], which encourage us to explore the nature of 

teleoperation for social robots with new considerations. 

In this paper, we start by building a top-level model for the scope 

of our study, and implement it for dialog-based interactions as a 

concrete application of theory. Simulation is introduced as a 

strong tool for exploring various factors in our theory. Finally, we 

apply and test our findings with a field trial in a real environment. 

2. OVERVIEW 
Figure 1 illustrates the basic workflow of a social human-robot 

team (HRT). We study an HRT consisting of a single operator and 

a certain number of semi-autonomous robots to conduct social 

interactions with customers. Here, we use “customer” to mean a 

person who engages in social interaction with a robot, as opposed 

to the operator of the robot. 

The operator’s job is to control robots to interact with customers 

through a teleoperation interface for the situations which cannot 

be handled automatically by the robot, or when a high risk of error 

exists in the autonomous system. To perform an operation, the 

operator should acquire situation awareness about the interaction 

happening between the customer and robot, and give proper inputs 

through the interface to control robot behaviors. 

As the operator is partially needed by each robot, teleoperation of 

multiple robots can be achieved by switching the operator among 

multiple robots. Switching efficiency is critical for the task 

accomplishment of an HRT, as it determines whether the operator 

can be assigned in time to the robots needing operation. 
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Figure 1. Basic workflow of a social human-robot team 

The existence of customers is a unique feature of social HRI. 

Interactions progress by the exchange of requests and responses 

between customer and robot; typically, the customer makes a 

request and the robot’s task is to respond to the customer in a 

socially acceptable way. In this study, we assume such 

interactions are dialog-based, with a customer asking a question 

and the robot answering, and each dialog contains only one pair of 

question and answer. 

We define Customer Satisfaction as a quantitative evaluation of 

a customer’s emotion after interacting with a robot. For 

applications of HRT providing a service by interaction with 

customers, customer satisfaction can be applied as an important 

metric for measuring the performance of robots. 

2.1 Operator Model 

 

Figure 2. Operator model 

The operator model is explained in Figure 2, which illustrates the 

activities of the operator when operating multiple robots in 

sequence, and the key terms that are related to operation time. 

As in [3], operation time for a robot can be separated into time for 

(a) attaining situation awareness, (b) thinking of proper inputs and 

(c) giving inputs via the interface. We combine (b) and (c) as 

actuation time, which enables us to measure it in experiments. 

Between the operations of each robot, there may be an interval of 

switching time for deciding which robot to switch to. 

The UI design affects operation time by affecting time for both 

situation awareness and actuation. A well-designed UI should 

help the operator to quickly be aware of the situation about which 

the customer has asked, and enable quick actuation for responding 

by providing adequate and efficient inputs. 

Situation Coverage (SC) is a metric for task difficulty defined as 

the percentage of prepared responses among all interactions with 

customers [8], which affects actuation time. A covered situation 

means the robot’s response behavior and the corresponding UI 

input to trigger that response are prepared, so that actuation can be 

made quickly; an uncovered situation means the robot does not 

have a prepared response behavior, which results in slow 

actuation while the operator makes an improvised response. Even 

for a well-prepared system, uncovered situations may occur since 

customer questions can be difficult to predict. 

2.2 Customer Model 

 

Figure 3. Customer model 

Figure 3 depicts a typical flow of customer activities during a 

dialog, which is composed of four steps: (a) waiting to ask, (b) 

asking a question, (c) waiting for an answer and (d) receiving the 

answer. 

Customer satisfaction is affected by various factors that we refer 

to as interaction quality, such as sociability and friendliness of a 

robot, and accuracy and promptness of its response. Among these 

factors, we focus on the effect of customer wait time during an 

interaction. Wait time comes from a delay of operation, which is a 

unique feature in the study of teleoperation of social robots. In this 

study, we assume the accuracy of responses can be ensured by the 

operator, and examine how customer satisfaction changes for 

different wait times. 

There are two types of wait time in an interaction: waiting to ask a 

question and waiting for an answer. Research shows that 

customers get frustrated while waiting [25], and we believe that 

the effects of the two wait times are different, which will be 

explored in detail in this study. 

Situation coverage connects the customer and operator models, as 

it is determined by the content of customer questions, and it 

affects operation time. This means customer activities may affect 

an operator’s performance because the operator’s task is to 

respond to customers when controlling a social HRT. 

3. MODEL IMPLEMENTATION 
We build a concrete model for HRTs engaged in dialog-based 

interactions in which the operator works as a speech recognizer 

and provides expert knowledge. With such models, an efficient 

operator assignment algorithm is achieved based on the 

anticipation of interaction structure and operation time. 

3.1 Customer-Robot Interaction Model 
A previous study has provided a way of modeling conversational 

interactions based on priorities of interaction phases [7]. By 

implementing this on the customer model presented in section 2.2, 

we define phases of interaction as shown in Figure 4. 
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Figure 4. Customer-robot interaction phases 

A conversation between customer and robot is modeled by four 

phases which vary in time-criticality: 

 Non-Interactive Phase: This is when no interaction occurs 

and the robot is waiting for a customer’s arrival. 

 Pre-Critical Phase: This is when a customer arrives and is 

waiting to ask a question before the robot finishes talking, 

such as a greeting or self-introduction by the robot. 

 Critical Phase: This phase includes a customer asking a 

question and waiting for an answer. The operator conducts 

speech recognition in this phase, and may provide expert 

knowledge for uncovered situations. 

 Post-Critical Phase: This phase is when the operation is 

complete and the robot answers by executing designated 

behaviors. 

The critical phase is important for the operator’s task assignment 

because in this model, it is the only time during an interaction 

when the operator is needed, and latency of operation may cause 

failure of an interaction because of the customer’s frustration. All 

the other phases can be handled automatically by robot. 

3.2 Model of Customer Satisfaction 
We hypothetically model the drop in customer satisfaction as a 

linear function of wait times before and after asking a question 

when assuming a consistent quality of answers. As in equation 

(1), customer satisfaction (S) has an initial value V, which drops in 

speeds   and   during wait times before (        ) and after 

(      ) asking a question. 

                       (1) 

  and   denote different drop speeds of satisfaction in two 

conditions of waiting, which are also affected by the context of 

interaction. For example, while waiting for the same amount of 

time, a customer will be less frustrated when waiting for an 

answer that is inherently hard to answer than for an easy-to-

answer one. We believe     in general because the time 

waiting for an answer is more critical than the time waiting before 

a question, causing more anxiety to the customer. This hypothesis 

will be verified by data collection from customers. 

Two mechanisms can be applied from previous studies to mitigate 

customer frustration during wait time, which we refer to as Wait-

Time Management: 

1) Proactive Timing Control (PTC) 

This technique is introduced in [8] for controlling the length of the 

pre-critical phase. When the operator is busy with tasks of other 

robots and cannot be assigned to a robot entering the critical 

phase, the robot can perform PTC to delay the entrance to the 

critical phase by talking about prepared content for a planned 

amount of time. As the robot keeps talking within its “turn” in the 

conversation, the extra behaviors may provide a natural 

impression to the customer and cause less frustration. 

2) Conversational Filler 

This is introduced in [25] to mitigate a customer’s frustration 

while waiting. It can be used in the critical phase when a customer 

is waiting for an answer. During such time, the robot can speak 

phrases such as “well...”, “let me think...”, or “uh...” to give the 

impression that it is actively thinking of an answer. Experiments 

[25] show that conversational fillers successfully moderate 

customers’ negative impression of a long waiting time. 

3.3 Model of Operation Time 
Operation time is critical for a social HRT because a customer 

should continue waiting while an operation is completed. Starting 

with the model in section 2.1, we define operation time (          ) 

as the sum of listening time (        ) and actuation time 

(          ), as in equation (2). The time for attaining situation 

awareness is represented as listening time because audio is the 

major source of information in dialog-based interactions. 

                               (2) 

Reducing Listening Time 

Listening time is a function of the utterance time required for the 

customer to ask a question. We can buffer the audio during dialog 

and reduce the operator’s listening time by playing back with 

acceptably faster speed. Let K denote playback speed,      denote 

customer asking time, and         denote the absent time between 

when the customer starts asking and the operator starts listening, 

then         can be calculated by equation (3). The maximum is 

taken because listening can’t end before a customer finishes 

asking a question. 

                                  (3) 

By reducing listening time, total operation time can be reduced, 

which results in higher customer satisfaction by making a 

customer wait less during an operation. 

Situation Coverage and Actuation Time 

As introduced in section 2.1, situation coverage affects an 

operator’s actuation time by influencing the operation interface. 

For dialog-based interactions, controls such as buttons can be used 

to trigger prepared utterances for covered situations; otherwise, 

text-to-speech can be used for generating utterances for uncovered 

situations, but this may take longer actuation time as the operator 

must type the entire phrase for an answer. The differences in 

actuation time for different input types are studied in section 3.5. 

3.4 Switching Algorithm 
A challenge in teleoperation of multiple robots is timely allocation 

of the operator to robots requiring operation, which is referred to 

as switching efficiency. We propose a switching algorithm based 

on our interaction models, using estimates of operation time for 

multiple input mechanisms. 

3.4.1 Basic Mechanism 
To ensure that the operator is always assigned to the robot whose 

customer has been waiting the longest time in the critical phase, 

two FIFO queues are maintained according to phase start time, as 

shown in Figure 5. The operator is always assigned to the robot at 

the head of the Critical Queue, which is the first robot to start the 

critical phase. Other robots perform PTC until the operator is 

assigned to them. 
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Figure 5. Queuing of robots by switching system 

With fast-playback, the critical phase can start ahead         

of asking time before the operator is assigned because listening 

time is     of asking time, which results in the following 

decision logic, where              denotes the sum of estimated 

operation time in the Critical Queue: 

 

3.4.2 Estimation of Operation Time 
When multiple input types exist and it is impossible to tell which 

type will be used before operation, actuation time can be 

estimated using a probabilistic approach. Suppose there are n 

input types, each with a probability    being used and a Gaussian 

distribution        
   of actuation time. A penalty function can be 

defined by equation (4), where x, y denote estimated and actual 

actuation times, and  ,   are penalties of wait time as in customer 

satisfaction equation (1). 

         
               
                

  (4) 

Let           denote the expected penalty for input type i when 

estimated actuation time is t; then it is as in equation (5), where 

         
   is the probability density function. The expected 

penalty for estimation t is the expectation from all possible input 

types, as in equation (6). Estimated actuation time (           ) is 

taken with minimum expected penalty, as in equation (7). 

                    
          

 

 

 (5) 

                    

 

   

 (6) 

                   
     

        (7) 

Best estimation can be achieved by comparing expected penalties 

for all possible estimations. For example, suppose the operation of 

three input types have the same probability (   ), and actuation 

time of each type are            ,            ,               

seconds. Figure 6 shows the expected penalty for different 

estimations, where 22 seconds is the best estimation. 

 
Figure 6. Estimation of actuation time and expected penalty 

3.5 Data Collections 
Data collections were conducted to get human data for our models 

of the customer and operator. To investigate the impact of 

complexity in dialog-based interactions, two scenarios were used.  

 Guide Scenario: Robots work at a shopping mall to provide 

route guidance service. Customers ask questions about where 

some shops are, and robots answer accordingly. 

 Seller Scenario: Robots work as sellers at a PC shop. 

Customers ask various questions related to PCs or 

peripherals, and robots give accurate answers. 

The first scenario represents a context when customers are in a 

hurry and interactions are short. The second one is about a 

relatively complex scenario, when customers are not in such a 

hurry but need detailed information. 

Portrait of Participants 

Undergraduate Japanese students were recruited for data 

collections regardless of whether they had any background in 

robotics. We did not allow the same participants to take part in 

both data collections for operator and customer, because knowing 

how robots are operated may affect a participant’s evaluation 

when acting as a customer. Basic computer skills for daily life 

were required for participants acting as operators. 

3.5.1 Customer Data Collection 
Fifteen people participated (8 female, 7 male, mean 22 years old) 

as customers, asking 16 questions for each of two scenarios. The 

robot acted with PTC among 0, 15, 30, 45 seconds and delay with 

conversational fillers among 0, 5, 10, 15 seconds. Satisfaction was 

scored with integers from -5 to 5, where -5 and 5 indicate 

maximum negative and positive satisfaction. Each scenario was 

repeated twice to counter-balance the ordering effect. 

By linear regression analysis using least squares, parameters of 

equation (1) were calculated as in Table 1 (decision coefficient    

are 0.970 and 0.967 for each scenario, which indicate very good 

fitting). Asking and answering times were measured, where μ and 

σ are mean and standard deviation. 

Table 1. Parameters from customer data collection 

Scenarios       

Customer 

Asking 

Time (s)  

Robot 

Answering 

Time (s) 

μ σ μ σ 

Guide 3.65 0.07 0.18 4.1 1.4 5.1 0.6 

Seller 3.68 0.04 0.14 5.8 1.8 10.6 1.7 

It was verified that     for both scenarios, meaning people are 

generally more patient when waiting before than after asking. 

With larger V, smaller   and  , customers tend to be more patient 

in a seller scenario, meaning people’s patience is different 

depending on the complexity of conversation. 

3.5.2 Operator Data Collection 
Sixteen people participated (7 female, 9 male, mean 21 years old) 

in the two scenarios. To explore the effect of UI on actuation time, 

operation was measured using three input types: binary choice, list 

choice and typing. For binary choice, two choices were shown; for 

list choice, 20 choices were shown; and for typing, the operator 

directly entered the answer into a text field. 
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Table 2 shows the result. Actuation time increased as the 

complexity of operation increased, with typing time obviously 

longer than the other two, and selection from list choices took 

longer than binary choice. The operation of the seller scenario 

took longer than the guide scenario for each interface, revealing 

the effect of conversation context on actuation time. 

Table 2. Measured actuation time for different input types 

Input Types 
Binary List Typing 

guide seller guide seller guide seller 

Actuation 

Time (s) 

μ 1.9 2.2 3.1 5.5 32.9 45.0 

σ 0.6 0.9 1.9 4.8 11.9 18.5 

4. SIMULATION 
This modeling provides the potential for studying social human-

robot interactions in great detail, which we can achieve by 

simulation. We built a simulation tool for estimating the 

performance of an HRT, and conducted an experiment to validate 

its result. Then, we explored the effects of different strategies and 

techniques in teleoperation of social HRTs using simulations. 

4.1 Simulation Tool 

 
Figure 7. Outline of simulation tool 

We built a simulation tool to simulate the process of interactions 

without actual participation of humans or robots. As illustrated in 

Figure 7, it is a computer program simulating activities of an 

operator, robots, and customers, which runs based on time by 

refreshing the status of simulated entities, triggering events 

representing dynamics of interaction phases and operator 

activities with specified timings. 

Customer-robot interactions are simulated by updating interaction 

phases with durations of customer and robot utterances in each 

phase, which can be measured from real interactions. Operation 

time of each simulated robot is calculated by the operator model, 

based on asking time from the simulated interaction and specified 

actuation time. The switching algorithm decides the mapping 

from the simulated operator to robots just as in a real application. 

As the output of the simulation, customer satisfaction for each 

interaction is calculated by counting wait times of the simulated 

customers during PTC and the critical phase. Performance is 

calculated as the sum of satisfactions from all interactions divided 

by total simulation time, as in equation (8). 

             
             

    
 (8) 

4.2 Validation Experiment 
The experiment was conducted to determine whether simulation 

can provide a reliable result in comparison with human operators. 

Fifteen people participated (6 female, 9 male, mean 20 years old). 

4.2.1 Procedure 
The validation was processed by comparing the performance of 

robot teams (a) operated by participants and (b) from simulation, 

for each team size from 1 to 8. If two conditions get similar results 

for each robot number, it can be verified that simulation can 

provide trustworthy estimation. 

For condition (a), real robots and customers were not set up, but 

recorded audio of questions was used to simulate customers. We 

didn’t recruit people to be customers because audio of their 

questions can give the operator a similar experience of 

teleoperation, and by using the wait time resulting from operation, 

performance can be calculated the same as with customers 

involved. For condition (b), data measured from interactions as in 

Tables 1 and 2 were used as inputs, which enables the simulator to 

generate timings based on real-world parameters in its execution. 

A guide scenario as described in section 3.5 was set for both 

conditions, and frequent customer arrival was simulated by setting 

the arrival interval as         seconds. Situation coverage was set 

to 90%, with list choice and typing available for covered and 

uncovered situations. 

4.2.2 Results 
Figure 8 shows the comparison of performance1 from simulation 

and mean values by participants, where standard deviations of 

participant data are also depicted. Although slight differences in 

some data points exist due to variation of performance by 

participants, the changes of performance show the same trend, and 

both results indicate the fan-out being 3 by forming performance 

plateaus of similar shapes. Thus, we can conclude that simulation 

provides reasonable estimation regarding actual performance 

when using data measured from real interactions. 

 
Figure 8. Comparison of performance between human 

operators and simulation 

4.3 Explorations with Simulation 
Once it is proved that simulation can provide valid estimations, 

the effects of various strategies and techniques can be explored 

using simulations without actual dispatch of human-robot teams. 

4.3.1 Effect of Estimation and Fast-Playback 
To explore the effect of operation time estimation and fast-

playback for improving performance of an HRT, simulations were 

run under four conditions. As the baseline condition, neither 

estimation nor fast-playback was used, so that PTC will last until 

an operator is assigned, and listening was at normal speed. For 

                                                                 

1  The time unit for measuring performance is “Minutes” 

throughout this paper. 
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conditions with only estimation or fast-playback, the effects of 

using those single techniques were explored. The condition of 

using both techniques is the same as our switching algorithm. 

Situation coverage and customer arrival were set to be the same as 

in subsection 4.2. 

As seen in Figure 9, conditions using neither technique and using 

only fast-playback get the same result, and conditions with only 

estimation and with both techniques get gradually improved 

performance. This shows that expectation of operator activities 

and reducing operation time are both helpful for improving 

performance. It also shows a case where a technique (fast-

playback) for reducing operation time is not effective until good 

estimation of operation is applied. 

 
Figure 9. Comparison of performance by four conditions 

4.3.2 Effect of PTC 
We simulated the effect of using and not using PTC. When not 

using PTC, customers have to wait after asking even if the 

operator is busy with other tasks. With PTC, it is the same as our 

switching algorithm. Situation coverage and customer arrival were 

set to be the same as in subsection 4.2. 

As shown in Figure 10, the two conditions get similar results up to 

two robots, and the performance without PTC severely drops for 

larger team sizes. Fan-out is increased by 1 with PTC. More 

importantly, the results indicate that PTC can effectively mitigate 

the risk when customers simultaneously arrive at many robots. 

 
Figure 10. Comparison of using and not using PTC 

5. FIELD TRIAL 
A field trial was then conducted in a shopping mall over four 

days. The goal was to use the modeling strategy to prevent ad-hoc 

settings for preparation and ensure adequate performance of the 

human-robot team in a deployment for a real-world application. 

5.1 Setup and Procedure 
We were asked to provide service with robots at an event for the 

anniversary of a shopping mall, including the tasks of (a) 

providing route guidance service, (b) playing with children and (c) 

replying to customers’ questions. ROBOVIE-II communication 

robots were used to interact with customers. 

To prepare the system for the tasks, our procedure for the field 

trial is described in Figure 11. It consists of three steps, and 

simulation was used throughout all steps. 

 
Figure 11. Procedure of field trial 

At the beginning step, robot behaviors for answering customers’ 

questions were designed and implemented. Although designing 

more behaviors is helpful for improving performance, the time 

and effort to design behaviors are precious and should be 

preserved; also, we can’t spend an infinite amount of time for 

preparation in reality. Thus, a decision to set a target amount was 

necessary, which was achieved by simulation using acquired 

information. 

The user interface was designed for implemented behaviors, and 

an experienced operator was assigned during the whole procedure. 

Operation time is critical for a social HRT, which affects the wait 

time of a customer; but how quickly should an operator respond? 

Simulation was used to estimate performance with measured 

operation time, and improvements of UI and training were made 

until we could expect an acceptable performance by the operator. 

Deployment was conducted when good performance could be 

expected after the previous steps. We deployed the proper number 

of robots to ensure good performance, and observed the activities 

of the robot team interacting with customers. 

5.2 Results 
5.2.1 Effects of Modeling 
Our modeling of customer-robot interactions and operation 

contributed to making important decisions in the deployment 

procedure when simulation was applied based on the modeling. 

Advantages that make our deployment different from previous 

approaches are explored. 

Effect for Target Setting 

At the beginning step, the target of team size and necessary 

situation coverage (SC) were calculated using the model of 

interactions we studied for the guide scenario.  

Table 3 shows the lower boundaries of SC for controlling 

different numbers of robots in simulation using data collected for 

the guide scenario. The result indicates at most three robots can be 

controlled when SC is over 91%, and 41% is needed to dispatch at 

least one robot. 

Table 3. Minimum required SC for different fan-out 

Fan-out 1 2 3 

Minimum SC 41% 74% 91% 

Since a previous field trial in a shopping mall [14] achieved over 

90% SC, we set the target to deploy three robots by implementing 

behaviors to achieve 91% SC. To get a high level of SC, we made 

(a) 99 behaviors for route guidance, (b) 6 behaviors for playing 

with children, and (c) 17 behaviors for providing information. 
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We needed to measure whether behaviors could provide the 

expected SC from real interactions prior to deployment because 

insufficient behaviors may cause failure in the real deployment 

due to low SC. Good performance should be ensured in this 

procedure because customers will be involved. One robot was 

used for measurement because simulation tells us only 41% SC is 

needed for it to perform well, which we believed could be 

achieved using the implemented behaviors. SC was measured as 

95.7%, higher than our expectation. Hence, we interpreted this to 

mean that the preparation of behaviors was sufficient. 

The target for preparation and needed effort to reach the target 

was successfully estimated using simulation; otherwise, we would 

not be able to know how many robots to deploy and how many 

behaviors to implement in the preparation step. 

Effect for Performance Estimation 

Before robots were dispatched for measuring SC, a UI was 

implemented for the new behaviors, and the operator was trained 

until an acceptable performance could be expected. 

When the UI was implemented, actuation time for list and map 

inputs were measured, and simulation of the robot team with 

different sizes was run with measured actuation time, as shown in 

Figure 12 labeled as “before”. The simulation shows fan-out is 

one with performance barely above zero, meaning the HRT would 

perform very badly if deployed with the current condition. 

 
Figure 12. Actuation time and simulation result before and 

after improvement 

This low performance resulted from long actuation time, 

especially for the map interface. From the operator’s feedback, we 

found that operation with the map was difficult because opaque 

buttons inhibited reading of the map. To solve this, we made the 

buttons semi-transparent, as in Figure 13, so that the operator 

could easily understand the locations represented by the buttons.  

 
Figure 13. Map UI before and after improvement 

Actuation time was measured after training with the improved 

map UI. The simulation was run using the updated actuation time. 

As shown with the label “after” in Figure 12, fan-out increased to 

three, indicating the end of preparation by accomplishing our 

initial target.  

By performance estimation, we were able to determine acceptable 

actuation time, and a potential failure of deployment by deficiency 

of UI was prevented. This is different from previous approaches, 

where problems were found and solved through repeated trials in 

a real environment. In our approach, potential problems can be 

found and solved before trials, which is very important for 

ensuring quality of service provided by social robots. 

5.2.2 Deployment Results 
One robot was deployed in the first two days because few 

customers were expected, and three robots were deployed in the 

last two days. Figure 14 shows three robots simultaneously 

interacting with children customers. 

 
Figure 14. Three robots interacting with children 

Situation coverage remained over 99% among a total of 285 

interactions conducted over the four days, indicating that prepared 

behaviors were sufficient to respond to most customers’ requests. 

As evaluation of performance, we measured customer wait times 

before and after questions, as shown in Table 4. When three 

robots were deployed in the last two days, mean wait times before 

and after questions increased by no more than 2 seconds, while 

many more interactions were conducted as the payoff from using 

multiple robots. 

Table 4. Customer wait time and number of interactions 

Days 1 2 3 4 

Mean Customer  

Wait Time (s) 

Before2 0.0 0.0 1.2 2.0 

After 3.6 3.9 5.3 5.0 

Number of Interactions 34 26 117 108 

This modeling approach led to a successful field trial. By 

simulations based on the modeling, time and effort for preparation 

were saved by setting the proper target at the beginning, and the 

quality of service was ensured before the robots met customers, 

which is a merit for applications in which customers have low 

tolerance for bad service. 

6. DISCUSSION 

6.1 Summary 
We have achieved practical modeling of social HRT for dialog-

based interactions. Operation time is modeled by listening and 

actuation. Customer-robot interaction is modeled by phases. 

Customer satisfaction is based on wait time during interaction, 

which is used for measuring performance of social HRT. Situation 

coverage is revealed as a connection between the customer and 

operator model, which is the result of customer activities and 

affects operation time. The connection between models and merits 

of modeling were validated through a field trial. 

                                                                 

2 The wait time before questions doesn’t include the time for a 

robot to do necessary self-introduction before each interaction. 
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With the model, we can answer the question of “how many social 

robots can one operator control” by computing fan-out based on 

performance estimation. By simulation using real-world data as 

inputs, the quality of service provided by a robot team could be 

estimated before the actual installation. We believe that this study 

provides a powerful method of designing a teleoperation system 

for controlling multiple social robots. 

6.2 Limitations 
One limitation of this paper is that the parameters for our models 

were set for a specific context, where robots worked in a defined 

area and interactions were restricted to a few topics. However, we 

believe the models can be applied to a large range of problems by 

adjusting parameters from real-world data for specific contexts. 

Also, our model only covered interactions with single round 

question and answer. For interactions with multiple questions, the 

customer-robot interaction model can be extended by adding 

looping of dialog and applying different words to robots for first-

round and consecutive dialogs. 

Another limitation is that our study did not model random errors 

of automation. In our model of interactions, we predict the 

moment when error could happen as the critical phase, but in fact, 

random errors may happen any time, both for conversation (e.g. 

sudden departure of customer) or navigation (e.g. robots hit 

obstacle). In the future, as speech recognition has the potential to 

make parts of interactions fully autonomous, the possibility of 

errors caused by this should also be considered. 
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