The best of both worlds:

Combining machine and human intelligence to crowdsource dialog data

Motivation

Current dialog systems often require large-scale domain-specific corpora as training inputs, yet it is **difficult** to collect domain-specific data to bootstrap and prototype conversational agents. To facilitate this, a systematic process for collecting both user and agent utterances is necessary.

Research Objective

We present a workflow to assist the process of collecting data, with these objectives in mind:

How do we measure the quality of training data during the data collection phase?
 Our framework alternates between humans-in-the-loop annotation and machine learning to identify when sufficient data have been collected

- How do we efficiently collect data while maintaining data quality?
 Our framework combines both crowdsourced ratings and machine-learning techniques to remove noisy data
- How can we use crowdworkers to generate different interaction styles for the agent?
 Our framework allows crowdworkers to generate and rate agent utterances for the purpose of training a dialog agent to interact using different interaction styles

Dataset

- Scenario: Customer support (Q&A) for a real estate agent.
- Intents: 29 intents
- Examples: which neighborhood the agent covers, neighborhood safety, services the agent provides
- Highly noisy customer and agent utterances (e.g out-of-scope, not English, nonsensical words)

Training data quality metrics

Stopping Criterion 1 (Pairwise semantic similarity): Measure the proportion of utterance pairs within an intent which surpasses a threshold level of pairwise **Stopping Criterion 2 (Connected component clustering)**: Connected components builds the paths between any existing subgraphs and a single vertex to eventually reach a

final stable graph in which any vertex belongs to one of many

Phase-Customer UtterancesAgent UtterancesData Collection Phase216923480Quality Control Phase164102943Fine Tuning Phase1667

Stopping Criterion 3 (Intent classification):

Train an intent classifier and evaluate the accuracy of each intent. We stop collecting example utterances

when the accuracy of an intent is above a threshold.

similarity, and use this as a stopping criterion.

Result

Offline evaluation: Even with the same number of customer training examples, an intent classifier achieved better performance from training data collected from the **quality control phase** as compared to **data collection phase**.

Phase # of training # of test Accuracy Precision Recall F1-score examples/intent examples/intent

Agent data evaluation (Ongoing):

- Developed 3 different versions of the agent trained with data from the data collection phase, quality control phase, and fine tuning phase.
- We hypothesize the agent trained with the data from the **fine tuning phase** will achieve the **best** agent behavior overall.

Is the apartment spacious enough?

It depends on the size of the property. Currently, we have an available apartment that is 650 square feet.

Is the area safe?

When compared with other major areas, we have a very safe and peaceful place

References

[1] Y. Kang *et al.*, "Data Collection for a Production Dialogue System: A Clinc Perspective."

[2] Shah P et al., "Building a Conversational Agent Overnight with Dialogue Self-Play"