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Abstract— With recent advances in social robotics, many 

studies have investigated techniques for learning top-level 

multimodal interaction logic by imitation from a corpus of human-

human interaction examples. Most such studies have taken the 

approach of learning equally from a variety of demonstrators, 

with the effect of reproducing a mixture of their average behavior. 

However, in many scenarios it would be desirable to reproduce 

specific interaction styles captured from individuals. In this study, 

we train one deep neural network jointly on two separate corpuses 

collected from demonstrators with differing interaction styles. We 

show that training on both corpuses together improves 

performance in terms of generating socially appropriate behavior 

even when reproducing only one of the two styles. Furthermore, 

the trained neural network also enables us to synthesize new 

interaction styles on a continuum between the two demonstrated 

interaction styles.  We discuss plots of the hidden layer activations 

from the neural network, indicating the types of semantic 

information that appear to be learned by the system.  Further, we 

observe that the better performance with the synthesized corpus is 

not merely due to the increase of the sample size, as even with the 

same number of training examples, training on half the data from 

each corpus provided better performance than training on all the 

data from a single corpus. 

 
Index Terms— Human-robot interaction, learning by imitation, 

social robotics, service robots, proactive behaviors, learning 

interaction style. 

I. INTRODUCTION 

N recent years, we have seen an upsurge of social robots 

being used commercially, specifically in the space of 

providing entertainment [1, 2], educating children [3, 4], or 

providing customer service [5, 6].  As more social robots gain 

traction in public, one promising approach for generating 

human-robot interaction logic is to automatically learn natural 

human behaviors by imitation from real human-human 

 

 

 

interaction. The arrival of the big data era reveals the feasibility 

of creating natural human-robot interactions empowered by 

data-driven approaches [7, 8, 9, 10]. Our previous work [7, 11], 

in which a shopkeeper robot learns to reproduce both reactive 

and proactive multimodal behaviors by means of abstraction 

from examples of human-human interactions, illustrates the 

idea that repeatable interaction data can be used to 

automatically infer interaction strategies for generating robot 

behaviors. 

While data-driven approaches can be an efficient method for 

reproducing robot behaviors, one possible downside is that 

individual behavior differences from person to person may end 

up confusing a learning-based robot regarding what behaviors 

it should reproduce. Traditionally, most data-driven approaches 

require training a unique model for each task, and since each 

model may require thousands of examples [12, 13], this 

approach may not be so scalable when it comes to learning the 

range of variations of social behaviors that arise from person to 

person. For example, in a shop scenario, if a passive shopkeeper 

mainly let customers browse around, while on the other hand, a 

proactive shopkeeper took initiative to interact with the 

customer – which shopkeeper should a robot learn from, or is it 

possible for the robot to jointly learn from both shopkeepers, 

even when the shopkeeper behaves differently in the same 

situation?  

Thus, this notion of learning social interactions from two 

different people instead of just a single person is an attractive 

option for a learning-based robot. Learning from two people 

provides more example training data, as well as the possibility 

to learn the different interaction style of each person. Both of 

these points are important, as having more training data could 

potentially improve the quality of the learned robot behaviors, 

and the possibility of learning multiple interaction styles can 

better equip the robot to assume different language behavior 

and interaction style depending on scenario or situation at the 

moment [14].  

In this work, we will attempt to move from the paradigm of 

a robot learning from just one person to jointly learning from 

two people who may behave differently given the same 

situation (i.e. passive and proactive). Since our goal is to jointly 
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learn from both shopkeepers and reproduce their behavior in a 

robot, we propose a simple modification to our previous 

learning system, which is to append a style feature to the input 

of the Multilayer Perceptron (MLP). In addition, we will 

investigate the effect of training jointly from both shopkeepers, 

demonstrating that it can both improve the performance of the 

robot behavior and equip the robot with the ability to assume 

different interaction styles via the style feature, due to the MLP 

learning shared neural representations for some semantically 

similar interaction patterns. Lastly, we discuss that the 

performance improvement when jointly learning from two 

shopkeeper corpuses is not just because of the increase of the 

sample size, as even with the same number of training 

examples, training on half the data from each corpus provided 

better performance than training on all the data from a single 

corpus.  

II. RELATED WORK 

A. Learning from data for social robots  

For social robots, frameworks focused on crowdsourcing 

have been developed to enable learning of overall interaction 

logic from data collected from simulated environments, such as 

the Robot Management System framework [15] and The Mars 

Escape online game [8, 16]. Remote users are asked to interact 

in order to complete several search and retrieval tasks in an 

online game. The interaction data are logged and used to 

generate autonomous robot behaviors to also complete the same 

task. In Thomaz et al’s work, they developed a framework to 

enable other online users to administer feedback when teaching 

a Reinforcement Learning agent to perform tasks observed in a 

game [17, 18].  While our work complements these approaches 

by considering crowd-based data collected directly from 

human-human interaction using sensors in a physical 

environment, we are also interested in capturing individual style 

from humans and reproducing the differing styles in a robot.   

The use of real human interaction data collected from sensors 

for learning interactive behaviors has been investigated in 

numerous works. In a study by Nagai et al., a robot was 

developed with infant-like ability to learn from human parental 

demonstrations by using a model based on visual saliency to 

detect likely important locations in a scene without employing 

any knowledge about the actions or the environment [19]. The 

robot JAMES was developed to serve drinks in a bar setting, in 

which a number of supervised (i.e. dialog management) and 

unsupervised learning techniques (i.e. clustering of social 

states) were applied to learn social interaction [20]. Admoni and 

Scassellati proposed a model that uses empirical data from 

annotated human-human interactions to generate nonverbal 

robot behaviors in a tutoring applications. The model can 

simultaneously predict the context of a newly observed set of 

nonverbal behaviors, and generate a set of nonverbal behaviors 

given a context of communication [21]. While some of these 

studies do support learning interactive behaviors, we are not 

aware of any framework designed to simultaneously learn from 

human demonstrators who exhibit distinctively different 

behavior styles, in terms of both verbal expression and 

nonverbal motion, given the same situation. 

B. Learning from multiple sources  

In robot manipulation tasks, most works have focused on 

learning a task-specific behavior [22, 23]. There have been 

some attempts to move from learning a task-specific model to 

jointly learning multiple robot tasks at the same time. Pinto and 

Gupta demonstrated how models with multi-task learning (i.e. 

grasp and push) tend to perform better than a task-specific 

model with the same amount of data [24]. They hypothesized 

that performance improvement is due to diversity of data and 

regularization in learning. Likewise, our study also considers 

the merit of jointly learning interactions from multiple people 

as a scalable solution for the robot to improve performance as 

well as learning different interaction styles at the same time.  

There have been some attempts to acquire verbal and non-

verbal dialog behaviors for a robot learned from multiple 

demonstrators. In Leite et al.’s study, they proposed a semi-

situated learning method to crowdsource from multiple authors, 

resulting in a dataset consisting of a set of annotated, human-

authored dialog lines that are associated with the goal that 

generated them [25]. Their system blends together content 

created by multiple authors and rated by multiple judges to be 

used for generating robot speech. In contrast to their work, 

where input from multiple authors is manually created and 

merged together, our work learns directly from data and aims 

to preserve and reproduce the individual styles of the 

demonstrators. 

In the regime of natural language processing, work with 

Long Short Term Memory (LSTM) neural networks has 

demonstrated [26] that translation to multiple languages is 

possible from one source language, an approach which also 

showed benefits such as better training efficiency and smaller 

number of models. The translation task of generating honorific 

language from English to German was made possible by 

training with two sources of informal and polite German speech 

[27]. Simultaneously, word-graphs were constructed by using 

tweets collected from two different domains (i.e. politics and 

entertainment) to transform regular chatbot responses to the 

responses which mimic the speaking styles of those specific 

domains [28]. Similarly, we also want to jointly learn different 

interaction styles from two different shopkeepers, but in the 

problem domain of learning multimodal human-robot 

interactions from noisy sensor data collected in a physical 

environment.  

III. DATA COLLECTION 

A. Scenario 

We chose a camera shop scenario for this study so that 

repeatable behaviors consistent with either a proactive or 

passive interaction styles could be observed. We set up a 

simulated camera shop environment in an 8m x 11m experiment 

space with three camera models on display, each at a different 

location (Fig. 1). For each interaction, one shopkeeper 

participant interacted with one customer participant. In this 

environment, our goal was to collect data corresponding to the 

following two shopkeeper behavior patterns: 
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• A proactive shopkeeper takes initiative, either by 

introducing new camera features or presenting a new 

camera to the customer, while still answering the 

customer’s questions.  

• A passive shopkeeper is preoccupied with other tasks in the 

shop and mostly lets the customer browse around the shop, 

though the shopkeeper should still be helpful by answering 

the customer’s questions.  

We chose these two interaction styles because we consider 

them to be particularly meaningful in HRI. For example, 

Baraglia et al. [29] have also investigated the importance of 

controlling a robot’s level of proactivity in collaborative tasks.  

B. Sensors 

We recorded the participants’ speech and movement as they 

interacted with each other. We used a human position tracking 

system, consisting of 20 Microsoft Kinect 1 sensors arranged in 

rows on the ceiling, to capture the participants’ positions and 

motion in the room. Particle filters were used to estimate the 

position and body orientation of each person in the room based 

on point cloud data [30]. 

The speech of each participant was also captured by a 

handheld smartphone, and the Google speech recognition API1 

was used to recognize utterances and send the text to a server 

via Wi-Fi. To detect the start and stop of speech activity, users 

were required to touch the mobile screen to indicate the 

beginning and end of their speech.  

Location data for the shopkeeper and the customer were 

recorded at a rate of 20 Hz.  Speech data were recorded at the 

start and end of each speech event, as signaled by participants 

tapping on their Android phones. 

C. Participants 

For the role of customers in our interaction, we recruited 

fluent English speakers as participants. They had varied levels 

of knowledge about cameras. We employed a total of 18 

customer participants (13 male, 5 female, average age 32.8, s.d. 

 

 
1 https://www.google.com/intl/en/chrome/demos/speech.html 

12.4). 

Since our goal was to capture the natural interaction styles of 

the shopkeepers, we initially interviewed and recruited 

participants with various degrees of proactivity as shopkeepers 

and observed some trial interactions. After the trial interactions, 

we asked the customer participants to provide feedback on the 

shopkeepers in terms of how well they fit the descriptions for 

the target interaction styles. Thus, based on the interview and 

feedback results, we selected one participant (male, age 54) 

with a naturally outgoing personality, as the proactive 

shopkeeper. Comparably, we selected another participant 

(female, age 25), who had a quieter disposition, as the passive 

shopkeeper. They played the assigned roles in all interactions. 

D. Procedure 

The shopkeepers were encouraged to act according to their 

type (i.e. passive or proactive), as described above. Both 

shopkeepers were instructed to wait by the service counter at 

the start of the interaction. They were also instructed to be 

polite, and to give socially-appropriate acknowledgements (i.e. 

greetings and farewells). 

To keep interactions interesting and to create variation in the 

interactions, customer participants were encouraged to play 

with the cameras and asked to role-play in different trials as 

advanced or novice camera users, and to ask questions that 

would be appropriate for their role. Some camera features were 

chosen to be more interesting for novice users (color, weight, 

etc.) and others were more advanced (High-ISO performance, 

sensor size, etc.), although they were not explicitly labeled as 

such. Customer participants were not given a specific target 

feature or goal for the interaction, as we were mostly interested 

in capturing the shopkeepers’ behavior.  

All participants were instructed to focus their discussion on 

the features listed on the camera spec sheet, ranging from 8 to 

10 features for each camera, to minimize the amount of “off-

topic” discussion. 

Each shopkeeper interacted with 9 different customer 

participants. For each customer participant, we conducted 24 

interactions each (12 as advanced and 12 as novice) for a total 

of 216 interactions. 17 interactions were removed for proactive 

shopkeeper trials and 10 interactions were removed for passive 

shopkeeper trials, due to technical failures of the data capture 

system or participants who did not follow instructions. Table 1 

presents the amount of data collected. This data set is available 

online2.   

E. Observed Behavior 

Overall, the customer participants followed our suggestions, 

though some customers have difficulty role-playing advanced 

2 http://www.geminoid.jp/dataset/camerashop/dataset-camerashop.htm  

TABLE I. AMOUNT OF DATA COLLECTED 

Shopkeeper Number of 

Trials 

Shopkeeper 

Utterances 

Customer 

Utterances 

Passive 206 1638 1940 

Proactive 199 2568 2299 

 

 
Fig. 1. Environment setup for our study, featuring three camera displays. 

Sensors on the ceiling were used for tracking human position, and smartphones 
carried by the participants were used to capture speech. 

Camera A

Camera B

Camera C

Sensors for tracking system

Service Counter

http://www.geminoid.jp/dataset/camerashop/dataset-camerashop.htm
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or novice camera users – for example, participants who had 

little knowledge about cameras were not easily able to think of 

the types of questions an advanced camera user would ask. 

Aside from this point, we observed a variety of behaviors 

captured, such as customers who spoke multiple topics in a 

single, long utterance and customers who only had direct 

questions. Since we encouraged the customers to play with 

different cameras, we observed that at times, a customer would 

be focused on a camera and would not speak or move for some 

time, thus creating a period of silence during the interaction.  

The shopkeeper participants behaved according to their 

assigned roles. For the passive shopkeeper, she mainly let the 

customer browse around the shop and only answered questions 

when asked. She gave short, concise answers and did not 

expound on her answers. In contrast, the proactive shopkeeper 

had much more variation in his responses, and he often spoke 

in long, descriptive utterances and volunteered extra 

information when answering questions.  

Here we describe four main differences we observed between 

the behaviors demonstrated by the two shopkeepers. First, the 

proactive shopkeeper approached the customer when he or she 

entered the shop, whereas the passive shopkeeper waited by the 

service counter. Second, the proactive shopkeeper often 

explained about 2 or 3 features at the same time, whereas the 

passive shopkeeper usually only explained one feature at a time.  

Third, the proactive shopkeeper often volunteered more 

information, either by talking about a new feature or continuing 

his previous explanation, after some silence had elapsed or 

when the customer demonstrated a “backchannel” utterance 

(e.g. “oh, ok”). In this situation, the passive shopkeeper would 

usually remain silent. Fourth, the proactive shopkeeper would 

ask the customer questions, such as ‘what sort of pictures do 

you take?”, whereas the passive shopkeeper rarely asked the 

customer questions.  

Table 2 illustrates example interactions from the both the 

passive and proactive shopkeeper. Notice that the passive 

shopkeeper is quite reactive, and her responses are usually short 

and concise. She also moves back to the service counter or 

remains silent when the customer does not inquire about a 

camera. On the contrary, the proactive shopkeeper presents 

additional information about the camera, both when the 

customer asks a question and when the customer remains silent.  

IV. PROPOSED TECHNIQUE 

A. Overview 

In order to reproduce proactive or passive interaction styles 

in a robot, we used a collection of data-driven techniques that 

directly learn behaviors (i.e. utterances and motion) from 

examples of human-human interaction from noisy sensor data. 

These techniques closely follow the procedure followed in our 

previous work [7, 11], and additional details are presented in 

the Appendix. The key steps of the techniques are listed here: 

1. Abstraction of training input and typical robot actions 

(Sec. IV.B): Continuous streams of interaction data 

captured from sensors are abstracted into typical behavior 

patterns, and the corresponding joint state vector and robot 

action are defined.  

2. Learning with Multilayer Perceptron (MLP) Neural 

Network (Sec. IV.C): We applied a feed-forward MLP 

neural network to learn to reproduce robot behaviors. An 

“attention” layer is applied to the neural network to learn 

the relative importance of various steps of interaction 

history as inputs to the respective robot output actions.  

3. Adding a target “interaction style” constraint (Sec. 

TABLE II. AN EXAMPLE INTERACTION FROM THE DATA COLLECTION (C: CUSTOMER, S: SHOPKEEPER) 

Interaction with a passive shopkeeper 

 

(Shopkeeper and Customer talking about Nikon) 

C: So you would recommend me this for holiday or traveling? 

S: Yes this is the perfect camera for traveling.  

C: Thank you I will look at another camera before I decide. 

S: Okay. 

(Shopkeeper moves back to Service Counter, Customer moves to Sony)  

C: Sorry excuse me. 

S: How can I help you? (moves to Sony) 

C: How much is this camera? 

S: that one is $550.  

C: this is very expensive.   

S: (Silence for 9 seconds) 

C: I will just look around… 

Interaction with a proactive shopkeeper 

 

(Shopkeeper and Customer talking about Sony) 

C: I'm looking for something lightweight but good quality. 

S: This Sony camera takes pictures that are almost as good as a top-end professional camera but it 

only has half the weight, please pick it up and have a try. 

C: Yeah actually this weighs alright... how much is it? 

S: This is only $550 so it's a quarter to a fifth of the price of a high-end professional camera. 

C: (Silence for 5 seconds) 

S: the picture quality is almost as good as DSLR because it's a mirrorless camera … 

 

ShopkeeperCustomer

ShopkeeperCustomer
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IV.D): In order to learn different interaction styles, this 

work extends the previous system by appending an extra 

token to the input of the neural network.  The token is 

initialized to correspond to the respective human 

shopkeeper from the training examples. At runtime, it can 

be used to specify whether the outputted target robot action 

should mimic the interaction style of the proactive or 

passive shopkeeper.  

The techniques for Steps 1 and 2 were presented in our previous 

study [7, 11], while Step 3 constitutes the novel contribution of 

this work which enables behavior generation for multiple 

interaction styles.   

B. Abstraction of training input and target robot action 

In order to learn effectively despite the large variation of 

natural human behaviors and noisy inputs from the sensor 

system, the sensor data needs to be abstracted into common 

behavior patterns (i.e. common spatial states and common 

spoken utterances), which are then used to discretize a 

continuous stream of captured sensor data into behavior events. 

Here we briefly describe our techniques:  

• Abstraction: To find common, typical behavior patterns in 

the training data, we used unsupervised clustering and 

abstraction to identify typical utterances, stopping 

locations, motion paths, and spatial formations of both 

participants in the environment.  

• Action Discretization: To discretize continuous sensor 

data, we identified an action whenever a participant:  (1) 

speaks an utterance (end of speech), and/or (2) changes 

their moving target, and/or (3) yields their turn by allowing 

a period of time to elapse with no action. An interaction is 

discretized into a sequence of alternating customer and 

shopkeeper actions. 

• Defining Input Features: For each action detected, the 

abstracted state of both participants at the time is 

represented as a joint state vector, with features consisting 

of their abstracted motion state and the utterance vector of 

the current spoken utterance.  

• Incorporating History: To provide contextual information 

for generating robot shopkeeper actions, the n most recent 

joint state vectors are incorporated as interaction history. 

We chose n = 3 since this seemed to be a good balance for 

generating observed shopkeeper behaviors (e.g. presenting 

new features) in our scenario. This interaction history 

constitutes the input to our learning mechanism.    

• Defining robot action: The subsequent shopkeeper action 

to the interaction history is mapped to a robot action, 

consisting of a typical utterance (e.g. ID 5) and a target 

spatial formation (e.g. present Nikon). The number of 

typical utterances is obtained from hierarchical clustering, 

further detailed in the Appendix. When executed, this 

would cause the robot to speak the typical utterance, “It’s 

$68”, associated with utterance ID 5, and execute a motion 

to attain the formation of present Nikon. This robot action 

is used as the training target for our learning mechanism.   

C. Learning with Multilayer Perceptron Neural Network 

We are interested in automatically generating robot actions 

using only data observed from human-human interaction. To 

achieve this, we applied a multilayer perceptron neural 

network, which has the ability to learn the representation and 

the mapping between our training data and how it best relates 

to a robot action. It attempts to generalize class assignments 

from examples in a dataset 𝒟 . Our dataset is composed of 

(𝑋,𝑟𝑜𝑏𝑜𝑡 𝑎𝑐𝑡𝑖𝑜𝑛) interaction pattern pairs, where 𝑋 ∈ ℝ3𝑚 is 

an interaction history consisting of the three most recent joint  

state vectors, 𝑋 = {𝑗𝑠𝑣𝑡−3, 𝑗𝑠𝑣𝑡−2, 𝑗𝑠𝑣𝑡−1} , and robot action 

∈  {0,1}𝑑 is a target class assignment where 𝑑 is equal to the 

number of possible robot actions. That is, if 𝑟𝑜𝑏𝑜𝑡 𝑎𝑐𝑡𝑖𝑜𝑛𝑖 =
1, observation 𝑋 maps to robot action 𝑖.  

Computation in the neural network is performed by artificial 

neurons, which are typically organized into layers. The 

activation value of neuron 𝑗 in layer 𝑙 is defined in (1) as  

 

 𝑎𝑗
(𝑙) = 𝜎(∑ 𝑤𝑗,𝑘

(𝑙)
∙𝑘 𝑎𝑘

(𝑙−1)
) + 𝑏𝑗

(𝑙)
) (1) 

 

where 𝑏𝑗
(𝑙), 𝑤𝑗,𝑘

(𝑙)
∈ ℝ  are parameters optimized by the 

network using the backpropagation algorithm, 𝑎𝑘
(𝑙−1)

 is the 

activation (output) of neuron k in layer 𝑙 − 1 , and 𝜎  is a 

nonlinear activation function.  

To learn context-dependent robot actions, we also included 

an attention layer in our neural network, as proposed by Raffel 

and Ellis [31], which has the ability to “attend” and learn which 

parts of the interaction history are important when predicting 

robot behaviors. The idea is once we have an activation value 

of neuron 𝑗 in layer 𝑙, 𝑎𝑗
(𝑙) , we can query each value asking 

how relevant they are to the current computation of the target 

class assignment. 𝑎𝑗
(𝑙) then gets a score of relevance which can 

be turned into a probability distribution that sums up to one via 

the softmax activation. We can then extract a context vector that 

is a weighted summation of the activation value in layer 𝑙 
depending on how relevant they are to a target robot action. 

Fig. 2 shows the schematic of the neural network, which is 

identical to the architecture of our previous system [11]. It is 

composed of three sets of input neurons of size 𝑚 from the joint 

state vectors in the interaction history, followed by two leaky 

rectified hidden layers, an attention layer, and another leaky 

rectified hidden layer. The output layer is a softmax with the 

 
Fig. 2. Schematic of the multilayer perception neural network. Interaction 
history is inputted to the neural network as joint state vectors and robot action 

as training target for the neural network.  
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number of neurons equal to the number of possible robot 

actions, which represents the probability of a robot action given 

an interaction history input.  

D. Adding style feature 

To capture the differences in shopkeeper behavior from the 

human-human interactions, we propose one simple 

modification to our previous system, which is to introduce an 

extra style feature to the joint state vectors. The idea is that this 

style feature specifies which shopkeeper behaviors the current 

interaction corresponds to, which is provided to the neural 

network as an additional input feature.  

At training time, the correct style feature is set based on the 

source of the human-human interaction data, that is, style is set 

to be <Proactive> if the training data came from the proactive 

shopkeeper and <Passive> if the training data came from the 

passive shopkeeper. This attribute is then concatenated as a 

style feature to the joint state vector. Next, we trained the neural 

network with the interaction data combined from both 

shopkeepers. When used in online operation, we assume that 

the style feature will be specified by a user who selects the 

desired level of proactivity in the robot action. 

 While one could envision alternative architectures to 

incorporate the style feature (e.g. directly connecting it to all 

hidden layers or connecting it to an output layer [32]), we 

consider the addition of an input feature to the neural network 

to target a desired interaction style to be a simple and elegant 

approach, as it requires no modification to the existing 

architecture of the neural network. Similar approaches have 

been applied and shown to be effective in neural translation 

systems – for instance, an artificial token was introduced in the 

input sentence of the source language to specify the required 

target language trained from multiple languages [26] and a side 

constraint was added to the source text to control the level of 

honorific for English to German translation [27]. 

In summary, we consider this proposed style feature to be a 

simple and elegant solution to incorporate training data 

representing differing interaction styles into the learning 

system. During training, we only need to add one additional 

feature to each joint state vector in the interaction history to 

preserve the observed interaction style, and during operation, 

we can control the style feature to specify a desired target 

shopkeeper interaction style.    

V. OFFLINE EVALUATION 

In this section, we evaluate our proposed system with the 

neural network using the additional style feature by training the 

system with the two conditions: (1) baseline condition: 

separately with only data from either the passive shopkeeper or 

proactive shopkeeper, (2) proposed condition: combining the 

training data from both the passive and proactive shopkeeper. 

Our goal is to confirm that our system enables the robot to 

become more socially appropriate when trained from the 

combined data as opposed to separate data, while still able to 

preserve the interaction style of the human shopkeepers.  

Our baseline condition is the system trained on separate data 

from either the passive or proactive shopkeeper, since the 

previous studies [7, 11] already confirmed that the system is 

capable of learning socially-appropriate behaviors from a single 

shopkeeper. Our proposed condition is the system trained on the 

combined dataset from both the passive and proactive 

shopkeeper, as we want to evaluate whether our extended 

system is capable of learning jointly from shopkeepers with 

different interaction styles. 

 

A. Evaluation  

To evaluate the performance between the combined and 

separate conditions, we performed cross-validation, by first 

randomly selecting approximately 10% of customer-

shopkeeper-customer behavior sequences from the dataset as 

test data, and using the other 90% of the dataset to train the 

neural network. In order to ensure a fair comparison between 

the two conditions, we chose an equal number of test examples 

representing the interaction with the passive and proactive 

shopkeeper for evaluation for both conditions. Thus, the total 

number of acceptable behaviors (i.e. behavior correctness) from 

the separate datasets is compared with the total number of 

acceptable behaviors from the combined dataset.    

Training parameters: All conditions were trained on the 

same neural network architecture described in Sec. 4.3. The 

input dimension to the neural network is 3𝑚, where 𝑚 is 1248, 

including the style feature. The number of neurons for each 

hidden layer is 800.  

 Since the activation value of the output layer represents the 

conditional probability of a robot action given an interaction 

history input, the number of neurons in the output layer will 

thus be dependent on the number of possible robot actions. This 

number will vary depending on which training dataset is used 

(for example, the passive shopkeeper used less variation in her 

utterances than the proactive shopkeeper). For a given dataset, 

the number of possible robot actions, 𝑐, is determined based on 

the number of utterance clusters and spatial states coming from 

that dataset.  Thus, 𝑐 was 711 for the proactive data set, 509 for 

the passive data set, and 912 for the combined data set. 

The training was performed by momentum-based mini-batch 

stochastic gradient descent, with a batch size of 128, a learning 

rate of 0.005, and a momentum coefficient of 0.9. Normalized 

initiation, described by [33], was used to initialize the neural 

network. The network was trained to minimize the cross 

entropy loss for 2000 epochs between the observed target robot 

action and the predicted robot action for the entire training set. 

Evaluation Procedure: To evaluate whether our system 

performs better when trained from two different shopkeepers 

versus a single shopkeeper, we evaluated the “social 

appropriateness” of the predicted behaviors, rather than using 

exact prediction accuracy. There could be numerous robot 

actions that could all be equally valid for a given input. For 

example, when a customer asks about the camera price, 

responding with “$2000”, “it’s only $2000”, and “the camera 

body is only $2000”, could all be considered equally valid 

answers. This approach is similar to the procedure used in [7] 

for evaluating the appropriateness of robot behaviors. 

To measure social appropriateness of the behaviors, we asked 
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a human coder, naïve to the experimental conditions, to 

manually rate the acceptability of each prediction as 

“acceptable” or “unacceptable”. Unacceptable behaviors 

included factually incorrect responses, failures to answer a 

question, strange behaviors like moving away to a new camera 

while a person was waiting for a response, and repetition of the 

previous shopkeeper behavior if not appropriate to do so. The 

evaluations were made based on transcripts of the collected 

dataset. Each coder was shown an interaction history of 

customer-shopkeeper-customer actions, where the utterances 

were automatically transcribed using ASR, and motion 

abstracted using techniques described in the Appendix.  

Because the two shopkeepers behave in different ways, we 

also consider some behaviors to be appropriate for one 

shopkeeper but not for another. For example, the passive 

shopkeeper remains silent during “backchannel” while the 

proactive shopkeeper will volunteer more information. For this 

reason, we showed some behaviors demonstrated by the 

different shopkeepers from the training interaction to the coder, 

and asked them to keep in mind whether the predicted behavior 

was consistent with the interaction style of the shopkeeper. 

Predicted behaviors were marked as “unacceptable” if they 

were not consistent with the interaction style of the shopkeeper.  

 As the behavior appropriateness ratings require subjective 

judgment, we confirmed the consistency of the coder’s 

evaluations by asking a second coder to independently rate the 

same data set. We checked the consistency between their 

evaluations by calculating Cohen’s Kappa, which was 0.764 for 

the baseline (separate) condition, and 0.718 for the proposed 

(combined) condition. We consider this to be good interrater 

agreement. For the following analyses, when the coders had 

conflicting “acceptable” and “unacceptable” ratings, only the 

rating from the first coder was used. 

B. Results of system performance in terms of behavior 

correctness 

 The results of the cross-validation comparison are shown in 

Table 3.  The overall behavior correctness was 67.6% in the 

baseline condition, and 81.3% in the proposed condition.  

To evaluate the statistical significance of differences between 

the baseline and proposed condition, a chi-squared test was 

performed. The chi-squared test showed significance, (χ2 (1, 

N=450) = 25.737, p < .001) indicating that the proposed 

condition resulted in significantly better performance than the 

baseline condition.  

C. Predicted behaviors between the two conditions 

It is interesting to note that the proposed condition resulted 

in much better performance than in the baseline condition, as 

this indicates that jointly training on both the passive and 

proactive dataset will enhance the performance of the robot 

behaviors. We speculate that the system may have the 

capability to automatically uncover similarity between the 

training examples of the passive and the proactive shopkeeper, 

in spite of the shopkeepers’ behaviors being quite different for 

the same given input. With such learning capability, the system 

would benefit from the increase in data samples provided from 

combining the data, and robot actions that were not well learned 

due to lack of repeatable training examples in the baseline 

condition would become better learned in the proposed 

condition.  

One area of improvement in the proposed condition was in 

handling cases where the customer is comparing between two 

cameras. For example, when the customer compares the price 

between cameras (e.g. “it’s bit pricey anything cheaper?”), the 

baseline condition did not predict introducing a cheaper 

camera, but instead incorrectly answers about the current 

camera’s weight. Conversely, faced with the same situation in 

the proposed condition, the system predicts correctly by 

introducing a camera with a cheaper price. Upon inspection of 

the training data, we found that there were only 107 times when 

the customer compares different cameras during interactions 

with the passive shopkeeper and 67 times during interactions 

with the proactive shopkeeper. By combining the training data, 

the number of training examples for comparing between two 

cameras increases, enabling the system to better learn such 

behaviors.   

D. Results for reproducing distinct interaction style  

While we have demonstrated that the system performs better 

when combining the data from two shopkeepers, a second, and 

equally important, question is whether the system can also reap 

the benefit of reproducing the different interaction styles of the 

shopkeepers when jointly learning from two shopkeepers. 

Particularly, we are interested whether the predicted behaviors 

in the proposed condition will also follow the general trend of 

those observed in the training examples of human-human 

interaction.  

In the human-human interactions, the proactive shopkeeper 

was more verbose with the customers and spoke an average of 

17.61 words per turn, whereas the passive shopkeeper spoke 

only 6.32 words per turn. Each human utterance is mapped to a 

TABLE III. RESULTS OF MANUALLY-CODED CROSS-VALIDATION COMPARISON. THE RESULT OF THE SYSTEM TRAINED WITH THE COMBINED DATA SHOWED A 

SIGNIFICANT DIFFERENCE WHEN COMPARED WITH THE DATASET THAT IS ONLY TRAINED ON THE INDIVIDUAL PASSIVE AND PROACTIVE DATASETS. 

Condition Training set 
# of training 

examples 
Test set 

# of test 

examples 

# of acceptable 

predicted behaviors 

Behavior 

Correctness 
p value Kappa 

Baseline  

(Separate) 

Passive 2142 Passive 225 166 73.8%   

Proactive 2223 Proactive 225 138 61.3%   

Total   450 304 67.6%  0.764 

Proposed  

(Combined) 

Combined 4365 Passive 225 190 84.4%   

Combined 4365 Proactive 225 176 78.2%   

Total   450 366 81.3% <.001 0.718 
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cluster, and a “typical utterance” from that cluster is used as the 

robot utterance. By its nature, the algorithm for selecting typical 

utterances tends to choose shorter utterances, so the average 

length of a typical robot utterance is shorter than the actual 

utterances from the training data. That is, 13.56 words for the 

proactive case, and 5.46 for the passive case.  

Since the training data showed that the proactive shopkeeper 

was more verbose than the passive shopkeeper, we would also 

expect a more verbose robot with <Proactive> style than with 

<Passive> style. As shown in Fig. 3, this was indeed the case, 

and the average word count per predicted utterance was 12.28 

with <Proactive> style and 4.90 with <Passive> style, 

suggesting that our proposed condition was able to preserve the 

different interaction styles of the human shopkeepers. We 

consider this to be a good indication that the learning system 

successfully captured the respective interaction styles of the 

shopkeepers in the training examples.   

One example that demonstrates interaction style is being 

preserved in the proposed condition is when the customer says 

a “backchannel” utterance (e.g. “I see”, “wow that’s light”) or 

remains silent. Frequently, the system predicts the robot should 

remain silent with <Passive> style, but predicts a proactive 

behavior with <Proactive> style (e.g. “Would you like to take a 

couple pictures with at first”). Another example is when the 

customer asks a question: the system tends to predict short 

concise answers (e.g. “this one has of 30 seconds of long 

exposure”) with <Passive> style and predict longer, more 

detailed answers (e.g. “the shutter speed can we [sic] set up to 

30 seconds if you want to go faster than that it is not possible 

with this camera”) with <Proactive> style.  

E. Examples of Weighted Style Feature Prediction 

Having a mechanism to generate robot shopkeeper behaviors 

using an additional style feature made us think about what 

happens when the learning system is provided not with a 

discrete style value but with a continuous value between two 

target style features. Instead of feeding the neural network 

either a <Passive> or <Proactive> style feature, what happens 

if we feed it a linear combination of (1-w)<Passive> + 

w<Proactive>? One expectation is that the model will gradually 

shift from predicting a passive shopkeeper behavior to 

predicting a proactive shopkeeper behavior as w increases, 

allowing us to intentionally blend between styles. 

In Table 4, we demonstrate several examples of the learning 

system predicting behaviors with different weights of w. In the 

first example (Fig. 4) where the customer enters the shop, the 

system predicts that the robot should wait at the service counter 

for weight values up to w = 0.8 before finally predicting that the 

robot should approach the customer when w = 1.0. The second 

example is a question about exposure. The predicted action is 

“It goes up to 30 seconds of exposure” when w <= 0.4, and 

predicts a more longer and detailed answer as w increases 

beyond 0.6. Likewise, in the next two examples, when w is 

small, the predicted action follows the typical behavior of the 

passive shopkeeper, and when w is larger, actions 

corresponding to the proactive shopkeeper’s behavior are 

predicted. It is interesting to note that the system predicted two 

different robot actions at w = 0.4 and at w = 0.8.  Perhaps the 

intermediate action had been observed from both shopkeepers 

in the training data. 

As the above examples illustrate, the shift in the predicted 

robot action from passive to proactive style does not always 

happen at a single threshold w value, so the robot could be 

expected to gradually exhibit a larger fraction of proactive 

behaviors as w increases. We find the possible implications of 

this result interesting, since it suggests the ability to “interpolate 

between personalities” and fine-tune the desired interaction 

style of the robot during run-time. Such controllability could 

provide the robot with a more adaptive interaction style 

depending on the user’s collaboration preferences for a passive 

or proactive robot [29].  

F. Visual Analysis 

The result of the system – that training a model across data 

from multiple shopkeepers can enhance performance of the 

robot action prediction – raises the question of whether the 

network is learning some sort of shared neural representation, 

in which interaction examples with the same semantic meaning 

are represented in similar ways regardless of differences in 

shopkeeper interaction style.   

One way to study the representations used by the network is 

to visualize the activation values. The activations of the hidden 

layer can be seen as an alternative (learned) representation of 

the input observation, given that the activation of layer 𝑙 
depends only on learned parameters and the activation of layer 

𝑙 − 1  (see Fig. 2). For our study, we used a variant of t-

distributed Stochastic Neighbor Embedding (Barnes-Hut t-

SNE) [34] to project high-dimensional activation values from 

the last hidden layer for visualization in 2D space, due to its 

ability to preserve neighborhoods in projections.  

What the untrained MLP knows: We first consider the 

untrained MLP with input and class assignment from combined 

data, and initialized according to Sec. IV.C. As shown in Fig. 

5(a), the projection of the last hidden layer of the neural network 

 

 
Fig. 3. Average Word Count per Shopkeeper Turn for the Proposed System. 

The predicted utterance follows the trend of the training data: the proactive 
shopkeeper is more verbose than the passive shopkeeper. The bar indicates 

standard error.  
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before training shows the activation values. The color and shape 

of the projection represent the shopkeeper type (i.e. passive 

versus proactive) and spatial formation from the inputs. We see 

that the projection is clearly separated by the shopkeeper type 

and spatial formation, which is unsurprising since these features 

are explicitly represented in the joint state vector. This seems 

to indicate that the untrained MLP treats (𝑋 ,𝑟𝑜𝑏𝑜𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 ) 

interaction pattern pairs separately by shopkeeper type and 

spatial formation. 

Training effects: We have observed that the system 

performed better after training with combined data, thus we 

naturally hypothesize whether the MLP learns some shared 

neural representation despite the different shopkeeper type or 

spatial formation. To study this hypothesis, we projected the 

activation values of the last hidden layer after training the 

network.  As shown in Fig. 5(b), we see the projected values 

converged despite different shopkeeper type or spatial 

formation. Hence, it is natural to assume that the learning 

process arrived at an alternative representation of the data that 

captures some sort of higher-level features [35], which are 

reflected by the projection.  

Understanding higher-level features: A logical next 

question is understanding the meaning of the higher-level 

features. We try to find answers by looking at the interaction 

pattern pairs themselves. The human-human interactions 

mainly consist of several distinct interaction patterns, for 

 
Fig. 4. When w = 0.0, the robot waits by the service counter as customer enters the shop. When w = 1.0, the robot approaches the customer as she enters the shop. 
 

TABLE IV. SEVERAL EXAMPLES OF GRADUALLY SHIFTING THE WEIGHT W FROM 0 TO 1 TO REPRODUCE PASSIVE TO PROACTIVE BEHAVIORS. 

Interaction History w 
Predicted robot 

action 
Generated robot speech 

Customer enters the shop 

C: (Enters the shop and moves to Sony) 

S: (Waiting at service counter) 
C: (moves from Sony To Nikon) 

0.0 0-Waiting (Waiting at service counter) 

0.2 0-Waiting (Waiting at service counter) 
0.4 0-Waiting (Waiting at service counter) 

0.6 0-Waiitng (Waiting at service counter) 

0.8 0-Waiting  (Waiting at service counter) 
1.0 144-Present Nikon Good afternoon how can I help? (approach customer at Nikon) 

Q&A  

(Both at Canon) 
C: What about this one with the ISO?  

S: The ISO here is 6400 it takes excellent shots in the 

evening but then you have full creative control with 
manual shutter settings. 

C: oh that sounds good how long does the exposure 

go? 

0.0 271-Present Canon It goes up to 30 seconds of exposure. 

0.2 271-Present Canon It goes up to 30 seconds of exposure. 
0.4 271-Present Canon It goes up to 30 seconds of exposure. 

0.6 190-Present Canon 
The standard shutter exposure settings go up to 30 seconds but then it 

has a bulb mode so you can stay open for as long as you want. 

0.8 190-Present Canon 
The standard shutter exposure settings go up to 30 seconds but then it 

has a bulb mode so you can stay open for as long as you want. 

1.0 190-Present Canon 
The standard shutter exposure settings go up to 30 seconds but then it 
has a bulb mode so you can stay open for as long as you want. 

Turn Yield 

(Both at Canon) 

C: [Silent] 

S: This is the Canon 5d Mark 3 it gives you full 

creative control so that gives you full exposure control. 

C: [Silent] 
 

0.0 542-Present Canon If you need anything else I'll be at the service counter. 

0.2 542-Present Canon If you need anything else I'll be at the service counter. 

0.4 288-Present Canon 
It has 61 auto focus points that can be combined in a variety of 

autofocus modes 

0.6 288-Present Canon 
It has 61 auto focus points that can be combined in a variety of 

autofocus modes 

0.8 288-Present Canon 
It has 61 auto focus points that can be combined in a variety of 
autofocus modes 

1.0 288-Present Canon 
It has 61 auto focus points that can be combined in a variety of  

autofocus modes 

Turn Yield 

(Both at Nikon) 

C: [Silent] 

S: How did you find the weight, it’s only 120 grams. 
C: Yeah I think it's good, it's very light.  

0.0 0-Present Nikon [Silent] 

0.2 0-Present Nikon [Silent] 

0.4 667-Present Nikon 
It has 18 preset modes and it has for instance beach mode and snow 
mode.  

0.6 667-Present Nikon 
It has 18 preset modes and it has for instance beach mode and snow 

mode.  

0.8 205-Present Nikon 
It has a zoom lens as well so if you want that little bit of extra help to 

make the frame look a little tidier it can do that.  

1.0 205-Present Nikon 
It has a zoom lens as well so if you want that little bit of extra help to 
make the frame look a little tidier it can do that.  

 

 

 

w = 0.0 w = 1.0



Preprint manuscript. The final publication is available at IEEE via http://dx.doi.org/10.1109/TCDS.2017.2787062 

 

10 

instance, question and answer. Thus, in order to understand the 

nature of our data and how it relates to the neural projection, we 

had a single coder manually annotate our combined dataset into 

the following three categories: 

• Q&A: When customer asks a question to the shopkeeper 

that is defined by our scenario. In additional, we annotated 

which camera feature the Q&A is related to.  

• Turn yield: When the customer decides to yield his turn by 

being silent, saying a “backchannel” utterance (e.g. “I see”, 

“that sounds good”), or answers a shopkeeper question 

(e.g. “yes”). 

• Ending interaction: When the customer decides to end an 

interaction before leaving the shop or wants to browse 

around by himself (e.g. “thank you very much for your 

help” or “I'm just looking around at the moments thanks”), 

followed by the shopkeeper’s acknowledgment.  

Table 5 shows some example interaction patterns that were 

categorized. Interaction patterns that did not easily fit in with 

our scenario (e.g. “my brother has a Minolta and he swears by 

it how does it compare”) were not annotated, since we consider 

them to be unrepeatable and thus will not be well-learned. Fig. 

6(a) shows the same projection as Fig.5 (b), but colored 

according to our annotation. From the projection, we see that 

“Q&A” is somewhat grouped into smaller clusters, each 

representing one feature,  “Turn yield” is not so well grouped, 

and “Ending interaction” is well grouped. 

When we inspect the projection, it becomes apparent that the 

neurons capture some general, and in fact quite useful, semantic 

information about interaction patterns. In our scenario, we have 

repeated interaction pattern pairs of the customer and 

shopkeeper doing semantically similar tasks (e.g. Q&A about 

Sony’s sensor size). So, even when there are natural variations 

in the customer utterances or differing shopkeeper responses 

due to interaction styles, there may be parts of the interaction 

history where similar actions are repeated among the customers 

or shopkeepers. As a result, this allows the neural network to 

exploit the unknown structure in the input distribution [36] in 

order to learn features at various levels of abstraction [35].  

We first examine the data annotated with Q&A. We observed 

that interaction patterns are mostly grouped according to the 

camera feature. Fig. 6(b) shows the Q&A for “sensor size”. We 

observed several ways the customer could ask about “sensor 

size”, as well as several different styles of answers by the 

shopkeepers, which were mapped to six different robot actions. 

Despite the differences, the projection was close together, 

indicating that the neural network was able to find semantic 

similarities among Q&A about the same feature. This 

phenomenon of Q&A about the same camera feature projected 

near each other was also observed for other camera features, 

such as price and color. On the other hand, for features like 

exposure, the projection was further apart between the passive 

and proactive shopkeeper. We believe that this occurs because 

the shopkeepers tended to respond in similar ways to questions 

relating to price and color, in contrast with more complex 

 
Fig. 5. Projection of the last MLP hidden layer activations for combined 

data (a) before training the neural network, (b) after training the neural 

network.  
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TABLE V. SAMPLE INTERACTION PATTERNS FROM ANNOTATION FOR Q&A, 

TURN YIELD, AND ENDING INTERACTION. EXAMPLES FROM PASSIVE 

SHOPKEEPER ARE (PA) AND EXAMPLES FROM PROACTIVE SHOPKEEPER ARE 

(PRO). FOR BREVITY, ONLY THE MOST RECENT CUSTOMER UTTERANCE AND 

THE CORRESPONDING SHOPKEEPER UTTERANCE ARE SHOWN. 

Q&A 

(Pa) C: and how about the exposure? 
S: you can hold exposure for up to 30 seconds. 

(Pro) C: can you do long exposure shoot? 

S: not pass 30 seconds I'm sorry for that you would have to go 
through the top-end camera with different settings. 

Turn Yield  

(Pa) C: that sounds very good. 

S: [silent] 
(Pro) C: uh huh oh yeah 

S: It’s a perfect camera for learning the basics of how 

photography works… 

Ending Interaction 

(Pa) C: ok I'll have a think about it thank you. 

S: no worries.  

(Pro) C: okay sounds good, thank you very much.  

S: no problem see you again. (go to back service counter) 
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questions about long exposure.  

In addition, we are also pleasantly surprised that despite 

some utterances being misrecognized by ASR (e.g. “sensor 

size” mistaken for “synthesize”), they were often projected 

correctly together with semantically-related utterances about 

that camera feature. This is an important observation, as it 

shows that the learning system has some robustness to ASR 

errors and is still able to predict socially-appropriate behaviors 

despite ASR errors, as demonstrated in [7].  

For “turn yield”, we observed that the projection did not 

show such clean semantic grouping. One reason for this might 

be that these interaction patterns are heavily dependent on 

previous interaction history, and thus few data samples that 

share similar context were observed, resulting in projection 

being scattered throughout the sample points. 

For “Ending interaction”, both the customer and the 

shopkeeper used a large variation of phrases to signal ending 

the current interaction. For customers, they sometimes thanked 

the shopkeeper or indicated they would come back later. The 

shopkeepers usually acknowledged the customer’s response in 

different ways and/or moved back to the service counter. 

Despite these variations, the projections were close together, 

suggesting that the neural network learned the semantic 

similarity of the “Ending interaction” examples. We believe 

that enough repeatability of the “Ending interaction” pattern 

was observed during training for the neural network to uncover 

similarities beyond surface text.  

In short, we consider this projection of the MLP to provide 

insightful visual feedback for understanding the learning 

system. Our inspections of the projection indicate that the 

neural network was able to learn shared neural representations  

for some semantically similar interaction patterns, despite 

differences in the observed behaviors from the shopkeepers.   

G. The amount of training data with respect to system 

performance  

While we have demonstrated that the proposed condition 

resulted in significantly better performance than the baseline 

condition, we are also curious to what extent the improved 

performance is due to having more training data in the proposed 

condition than the baseline condition. To investigate the effect 

of the amount of training data on the system performance, we 

undersampled the training data (i.e. 2183 training examples) in 

the proposed condition such that it was equivalent to the 

average amount of training data in the baseline condition. We 

trained and evaluated this undersampled dataset as described by 

the procedure in Sec. V.A. The behavior correctness for the 

undersampled dataset was 74.2% (i.e. 334 acceptable behaviors 

out of 450 test examples) with a Kappa value of 0.782, 

compared with a behavior correctness of 67.6% in the baseline 

condition (i.e. 304 acceptable behaviors out of 450 test 

examples).  We applied a chi-square test, which revealed that 

the ratio of the correctness in the proposed condition with the 

 
Fig. 6. Projection of the last MLP hidden layer activations for combined data with (a) annotation for Q&A, turn yield, and ending interaction. (b) A zoomed in 
view of Q&A about “sensor size”. Here, MLP learns that questions are semantically similar, even when they are lexically different. Despite the difference in 

response style for passive and proactive shopkeeper, the neural network also learns that they are similar in terms that that the utterance is about answering a 

question about sensor size.  
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C: oh how about the sensor size

S: this is an aps-c sensor so it's a little bit cramped to the way 

some people think of a 35 million sensor but it's getting a very 
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undersampled dataset was significantly higher than the baseline 

condition, (χ2 (1, N=450) = 4.528, p < .05). This suggests that 

even given the same amount of training data, a system trained 

with the undersampled data from both shopkeepers performs 

better than a system trained only on data of either the passive or 

proactive shopkeeper.  

This result, showing that the system performs better when 

jointly training from both corpuses than from a single corpus, is 

echoed by similar results that have been found in studies of 

robot manipulation [37]. Just like they have hypothesized, we 

also speculate that having training examples from both 

shopkeepers may expose certain customer behaviors that are 

not usually elicited through interactions with a single 

shopkeeper. Both shopkeepers’ actions are dependent on the 

customers, and interaction with one shopkeeper may reveal 

certain customer behaviors that are unseen when interacting 

with the other shopkeeper. By sharing the interaction data 

between the two shopkeepers, this will lead to more diversity in 

the customer’s actions. Our data-driven learning methodology 

requires perception of the customer’s action, abstraction of the 

social state, and generation of the equivalent robot actions. 

Therefore, at the very least, training the perception modules 

from a diverse set of customer actions, instead of customer 

actions elicited from just one shopkeeper, should be 

advantageous to the system’s performance.   

VI. DISCUSSION 

A. Analysis of acceptable versus unacceptable behaviors  

To better understand the ways the system failed, we further 

examined the behaviors that were rated as “unacceptable” in the 

proposed condition (combined data set). Based on Table 3, 366 

out of 450 behaviors were rated as “acceptable”. We analyzed 

the remaining 84 behaviors and identified three categories of 

errors:  

• Answer a question about camera feature incorrectly (34 

examples, 40.5% of all errors). Example: when a customer 

asked “It’s for my own business, what about this, does it 

take long exposure pictures?”, the predicted behavior was 

“this is the best camera we have in the store” instead of 

predicting an answer about long exposure pictures. 

• Generate an out-of-context behavior (40 errors, 47.6%). 

Example: when a customer wanted to takes pictures of 

family and friend, the system predicted to introduce an 

advanced camera instead. 
• Continue to interact with the customer even after the 

customer decided to leave (10 errors, 11.9 %). Example: 

when a customer said “thank you for your help today”, the 

system predicted “would you like to try taking a picture 

with it?”  

We believe many of these errors were due to reasons like ASR 

failure or insufficient training examples. While we did not 

thoroughly investigate the specific causes behind these 

“unacceptable” behaviors, an in-depth analysis of errors like 

these was reported for a similar system [7]. 

 

B.  Generalization and Scalability 

We believe that this data-driven approach can be generalized 

to reproduce interaction styles in other scenarios. In our human-

human training interactions, interaction data from the passive 

and proactive shopkeepers was captured and provided to the 

neural network using an additional style feature in the input.  

We expect that this style feature can also be used as a way to 

capture other types of interaction styles. We can imagine a 

museum tour guide robot that learns from two different human 

guides who behave differently, a person who gives a brief 

overview for each exhibit and a person who expatiates on the 

details of the exhibit. Likewise, this approach of capturing and 

reproducing interaction style could be applied to a receptionist 

robot, where we could control the style feature to either 

reproduce a more business-like interaction or a more friendly 

and casual receptionist. While this work demonstrates the 

feasibility of learning two distinct interaction styles, it will be 

interesting to investigate how the system can learn from 

multiple styles in the future, for example, by adding a new value 

in the style feature for each new distinct interaction style.  

Likewise, it would be interesting to combine data from multiple 

demonstrators to more robustly learn a single style. There may 

be some domains in which we will need new techniques in order 

to successfully reproduce interaction styles that are socially-

appropriate. These domains might require the robot to establish 

a knowledge base about the user. One example might be an 

educational robot that teaches language. Even if the robot could 

successfully reproduce the style of a more authoritative or more 

supportive human teacher, it would still need to have 

knowledge about a student’s progress or level of 

comprehension to successfully interact with the student.  

Connected with the concept of scalability, we have 

demonstrated that jointly learning from shopkeepers with 

differing behavior styles can contribute better than learning 

from one person, as compared with only using data from that 

one person. Traditional approaches to learning have often 

focused on learning task-specific models, sometimes requiring 

thousands of examples to be collected to learn a unique model 

for each set of similar tasks. This is based on the implicit 

assumption that learning across a variety of tasks does not help. 

This work attempts to break that myth by showing that jointly 

learning from shopkeepers with different interaction styles is an 

effective approach. Once passive collection of interaction data 

becomes practical, we can imagine training from not just two, 

but many shopkeepers in a real shop scenario and reproducing 

the interaction style of each individual shopkeeper.  

VII. CONCLUSION 

In this work, we have demonstrated a technique for learning 

multimodal interaction logic by imitation from two separate 

corpuses of human-human interaction data representing distinct 

interaction styles.  Through the addition of a "style" feature in 

the input to the predictor, we were able to adjust the robot's 

output behavior at runtime to resemble either of the two 

interaction styles, or some combination of the two. Examination 

of hidden layer activations indicated that the system appears to 
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have learned to associate semantically similar behaviors across 

the two interaction styles.  

Through offline evaluation based on human-human 

interaction situations held out from the training data, we 

showed that training the system on both corpuses together 

improved the system's overall performance in predicting 

behaviors for both of the two interaction styles. Interestingly, 

we also found that combining the training data from both 

corpuses and downsampling it to the size of the original training 

data set still resulted in an improvement in behavior prediction, 

a finding which is similar to results which have been reported 

in other fields of robotics. 

The task of programming social robots to be both 

convincingly humanlike and functionally useful presents many 

challenges, and learning-by-imitation techniques offer a 

number of benefits over other approaches, particularly in terms 

of scalability and robustness. However, one drawback of purely 

learning-based methods is that they tend to be "black box" 

systems that are difficult to control. The technique we have 

proposed suggests the possibility of providing a robot's operator 

with some degree of high-level control over the robot's 

personality or interaction style, which could constitute one step 

towards finding the right balance between manual 

controllability and learning-based robustness for interactive 

social robots. 

APPENDIX 

Here we describe the data abstraction techniques we used that 

enable the learning of high-level interaction logic in human-

robot interaction to be achieved in an entirely data-driven way, 

that is, without any kind of manual annotation or cleanup of the 

sensor data. This follows the work presented in [7]. 

Abstraction of input features 

Here, we describe the features used in the joint state vector, 

including the abstraction of motion (consisting of current 

location, motion origin, and motion target of both participants, 

and a spatial formation), and an utterance vector of the current 

spoken utterance.  

Motion Abstraction: The purpose of the motion abstraction 

step is to characterize a set of stopping locations, motion 

trajectories, and spatial formations which can be used to 

describe the motion of the customer or shopkeeper as a 

combination of discrete state variables rather than raw position 

or velocity data. 

To begin the analysis, we segmented all trajectories in the 

training data into moving and stopped trajectories, based on a 

velocity thresholding technique presented in [38]. We spatially 

clustered these trajectory segments to identify a discrete set of 

typical stopping locations and motion trajectories for each 

role (customer and shopkeeper).  

For stopping locations, we used k-means clustering, 

identifying five stopping locations for the customer (i.e. the 

locations of the 3 cameras, the middle, and the door) and five 

 

 
3 http://www.alchemyapi.com 

for the shopkeeper (i.e. the locations of the 3 cameras, the 

middle, and the service counter). 

 For moving trajectories we used k-medoid clustering based 

on spatiotemporal matching using dynamic time warping.  

We created rules for identifying a predetermined set of 

common spatial formations based on the distance between the 

interactants and their locations. The rules for spatial formations 

are similar to three existing HRI proxemics models: (1) present 

object [39]: both interactants were at stopping locations 

corresponding to the same camera, (2) face-to-face [40]: both 

interactants are within 1.5m of each other but not at a camera, 

and (3) waiting [41]: if the shopkeeper was at the service 

counter while the customer was not.  

In addition, we also identified the current spatial target for a 

particular spatial formation. The formation target for “present 

object” can be either Sony, Nikon, or Canon, whereas the 

formation target for the spatial formation “face-to-face” and 

“waiting” is ‘none’.  

Utterance Vectorization: We performed utterance 

vectorization of the customer and shopkeeper using common 

text-processing techniques. Specifically, we removed stop 

words, applied a Porter stemmer, enumerated n-grams up to 3, 

and performed Latent Semantic Analysis [42] to reduce the 

dimensionality to 1000. To emphasize important keywords, we 

also used the AlchemyAPI cloud-based service 3  to 

automatically extract keywords from each utterance and 

represented the keywords separately in the vector (200 

dimensions). By using this procedure, we were able to take any 

input utterance and represent it using a 1200-dimensional 

vector. Vectorization of customer and shopkeeper utterances 

were performed independently. 

Defining Robot Actions 

In our system, each observed shopkeeper action must 

correspond to a discrete robot action. A robot action consists of 

an utterance (represented by an ID number) with a 

corresponding target formation. 

Shopkeeper Utterance: In order to reproduce shopkeeper 

speech with a robot, it is necessary to define a set of discrete 

utterance actions. Common utterances are frequently repeated 

in the training data (for example, variants of answering about 

the color of Sony occur 61 times), but these instances often 

include slight differences due to speech recognition errors or 

individual variation. Thus, we used bottom-up hierarchical 

clustering based on lexical cosine similarity to group these 

repeated and similar utterances into clusters corresponding to 

discrete robot speech actions. 

From each shopkeeper utterance cluster, one utterance was 

selected for use in behavior generation. For each utterance, we 

compute the cosine similarity of its term frequency vector with 

every other utterance in the same cluster, and we sum these 

similarity values. The utterance with the highest similarity sum 

is chosen as the typical utterance. A total of 𝑐 typical utterances 

was extracted from the shopkeeper utterance clusters, which 
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can be used to generate robot speech. Notice the typical 

utterance can also be “none”, which means that the robot does 

not output an utterance.    

Target Formation:  We use the same abstraction rule 

described earlier to represent a target spatial formation for the 

robot (i.e. present product, face-to-face, waiting, or none). This 

allows the robot to precisely calculate its target position and 

facing direction defined by the specefic HRI model, in 

accordance with its estimation of the customer’s destination.  

For example, if the predicted target formation is different 

from the robot’s current formation, the robot moves to attain the 

new target formation. Specifically, if the predicted formation is 

face-to-face, the robot approaches the customer; if the predicted 

formation is waiting, it returns to the service counter; if the 

predicted formation is present-object, the robot approaches the 

target object; and if the predicted formation is none, the robot 

stays where it is.   
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