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ABSTRACT 
As more industries adopt chatbot technology, there is a growing 
demand for crowdsourcing utterances for training dialogue 
systems. Yet, it is well-known that crowdsourcing has a high rate 
of noisy and low-quality data. While techniques such as "golden 
answers" help with filtering noise for certain kinds of data 
collections, these techniques are difficult to use with utterance 
collection, due to its open-ended nature, resulting in large amounts 
of data that must be discarded. Thus, obtaining high quality 
utterance data often requires careful design and multiple iterations 
of the crowdsourcing task, which can lead to increase in cost of the 
crowdsourcing task. In this paper, we consider several variations of 
commonly-used workflows for utterance collection in a 
crowdsourcing platform and their effect on the utterance quality. In 
addition, we propose a strategy to adaptively terminate the data 
collection process based on utterance coverage and evaluate its 
effect on the performance of the downstream model. Finally, we 
examine the cost considerations for crowdsourced tasks and 
provide suggestions for future utterance collection procedures.  
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1 Introduction 
Recently, there is a growing demand for crowdsourcing 

utterance data to bootstrap and rapidly prototype machine learning 
models. The performance of these models often depends not only 
on the quantity, but also the quality of the collected data. However, 
crowdsourcing typically yields noisier data than traditional 
practices of in-house annotation or in-person data collection [7, 11]. 
The common practice of human-in-the-loop verification may filter 
noisy data and improve data quality, but it can also be costly. Thus, 
it is valuable to consider strategies that are cost-effective without 
compromising data quality or downstream model performance. 
However, the trade-offs between cost and data quality or model 
performance still remains an open research question [16]. 

While some studies focus on the actual prompts or instructions 
presented to crowdworkers [6, 8], few have studied cost-effective 

methodologies for influencing data quality or downstream model 
performance. Strategies such as using a two-tier payment scheme 
to incentivize crowd workers or using automatic verification may 
reduce cost, but their impact on the data quality is still debatable [5, 
11, 19]. In this paper, we first examine two questions: 

 
• How much does utterance quality improve when using two-

tier payment, compared with paying workers in full up front? 
• Since a majority of the cost lies in human verification, how 

does data quality improve using automated verification as 
compared to no automatic verification? 
  

Following that, we then investigate the other aspect of the cost 
efficiency problem – since there is cost associated with data 
collection, is there a strategy that can be used as a stopping criterion 
for data collection without impacting model performance? In the 
second part of our paper, we examine such adaptive termination 
strategy during the data collection phase. Our findings demonstrate 
that it is possible to reduce costs without sacrificing data quality.  

2    Related Work 
While many studies examine how we can use crowdsourcing 

for different applications, e.g. translation [1, 22], transcription of 
text from audio [9, 13], annotations for images and videos [4, 18], 
some studies have consider quality control in crowdsourcing tasks. 
Lease [11] shared some insights that while using automation to 
detect spammers may improve quality, such techniques rely on the 
preconception that workers may be by-and-large responsible or 
irresponsible. Vaughan [17] surveyed studies that show 
performance-based payments help improve quality, but this also 
largely depends on how salient the difference between payment and 
the wages for that particular region is. We are also interested in the 
correlation between cost and crowdsourced utterance quality, and 
we aim to evaluate utterance quality with different workflow 
variants.  

 3    Utterance Collection Workflow 
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We gathered information about best practices for utterance 
collection tasks by interviewing task designers employed at a 
crowdsourcing platform, whose responsibilities involved assisting 
customers (“requesters”) in designing crowdsourcing tasks. The 
design and deployment of utterance data collection tasks includes 
roughly the following steps: data collection, data verification, and 
the design of monetary incentives for that particular workflow. 

1.  Data Collection: The task designer first obtains details 
about the purpose of data collection from the requester. Then, she 
creates a task on the crowdsourcing platform, writes scenario-
specific instructions, provides examples of “good” and “bad” 
utterances, and chooses the appropriate crowd as per the requester’s 
requirements. For example, a requester may wish to summarize a 
long paragraph of text into a short sentence, where fluent English-
speaking crowd workers should be requested, while another 
requester interested in training data for an intent classifier may want 
ungrammatical wordings from non-fluent English speakers.  

2.  Data Verification: The output from the data collection task 
is often used as an input for the data verification task, which serves 
as a form of quality control for obtaining reliable data [10, 12, 14]. 
For each utterance collected, three distinct crowd workers are asked 
to judge its validity. The instructions for this task are similar to the 
data collection task, but rather than asking workers to generate 
utterances, they are asked to accept or reject an utterance based on 
their judgment on the validity of an utterance.  

Depending on the scenario, a requester may consider an 
utterance to be valid based on one or more of the following metrics: 

• Semantic Equivalence: The meaning of the collected utterance 
must match the original intent of sentence. 

• Grammaticality: The sentence should be well formed to follow 
the rules of the target language.  

• Gibberish: An utterance is considered gibberish if it is 
nonsense (e.g. “iivouwerweioh”) or not in the target language. 

 
To illustrate, a requester collecting utterance variants to train an 

intent recognition model for a chatbot might permit grammatical 
errors but require semantic equivalence to a target utterance, 
whereas another person collecting utterances to train a text 
summarization model might require grammatically correct 
utterances.  

The ratings are aggregated using an algorithm following the 
concept described in [3], where quality of workers, annotations, and 
input utterances are taken into consideration to calculate a score.  

3.  Monetary Incentives: Due to the open-ended nature of 
utterance collection tasks, a common practice is to institute a two-
tier payment system: a low to moderate base pay followed by a 
bonus [5, 19] upon successful completion of the task. This ensures 
that workers are incentivized to perform well on the current task 
and continue to do so for future tasks. 

Example Utterance Collection Workflow: A requester is 
interested in collecting 100 utterance variants for training a chatbot, 
and he decides to pay $0.03 per utterance collected, using a two-
tier payment system where the worker is paid $0.01 upfront and 
$0.02 when an utterance is validated. Each utterance collected is 
then sent to three workers during the verification step, for $0.01 per 
judgment. Thus, if 86 utterances were considered as valid after the 
verification task, this would be cost a total of $5.72, broken up into: 

 
Data Collection: 100	𝑢𝑡𝑡.× 	$0.01 = $1.00  
Data Verification: 3	𝑤𝑜𝑟𝑘𝑒𝑟𝑠	 × 100	𝑢𝑡𝑡.× 	$0.01 = $3.00  
Subsequent payment: 86	𝑣𝑎𝑙𝑖𝑑	𝑢𝑡𝑡.× 	$0.02 = $1.72 
 
For this particular example, 52% of the cost lies in the human 

verification step. This trend of the human verification task being 
the costliest in the overall workflow was observed in many of the 
utterance collection tasks within the platform.  

4    Case Study 

4.1 Experimental Design 
To investigate the question of how cost correlates with 

utterance quality, we varied two factors in the overall workflow and 
evaluated the quality of the collected data as follows: 

Single-tier (1T) vs. two-tier payment (2T): Since there is a 
cost associated with human-in-the-loop verification, we evaluated 
whether paying the workers upfront versus giving a two-tier 
payment would make a difference to the utterance quality. In the 
1T condition, we paid the total cost upfront ($0.03). In the 2T 
condition, we paid one third of the cost ($0.01) upfront, followed 
by the rest ($0.02) upon successful validation of an utterance. 

With (WS) and without (NS) smart validator: We 
investigated whether invalid utterances could be prevented during 
the data collection phase, thus mitigating the cost of human 
verification. To do so, we created an automated text validator that 
prevents workers from submitting gibberish and non-target 
language utterances. This validator estimates how likely it is to 
generate an utterance based on the character to character transitions 
of that utterance. An utterance is marked as gibberish when it has 
low probability. While we acknowledge that other metrics exist for 
validating utterances, and validation needs are scenario-dependent, 
we observed gibberish and non-target language utterances to 
comprise a significant fraction of noisy utterances.  

4.2 Scenario 
We set up a scenario to collect data using these four workflow 

variants. In this study, we asked workers to provide utterances that 
a customer might ask to a real-estate agent. We defined 29 intents 
(e.g. the safety of a neighborhood, and services the agent provides). 
For each intent, we collected 40 different utterance variations. 

For each workflow variant, we collected 1160 utterances. We 
then obtained the number of valid utterances for each workflow by 
aggregating ratings from three distinct workers, at a cost of $0.01 
for each worker judgment. Figure 1 shows the experimental 
conditions as well as the cost for each condition. 

4.3 Hypotheses 
We evaluated the data collected using four workflow variants: 

(1) 1T+NS, (2) 1T+WS, (3) 2T+NS, (4) 2T+WS, based on the 
payment scheme  and whether we used the smart validator or not. 
We made the following hypotheses:  
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Hypothesis H1: We predict that a two-tier payment scheme 
will incentivize workers to provide better utterance quality overall, 
compared to paying the full amount upfront. Therefore, utterance 
quality will be better when comparing the 2T conditions with the 
1T conditions. However, the overall cost will also increase.  

Hypothesis H2: Since as many as one-third of the 
crowdsourced utterances can be gibberish or is not in  the target 
language, we expect that using the smart validator will filter out 
these utterances. Therefore, we predict that utterance quality will 
be better in the WS conditions vs. the NS conditions. As there is no 
additional cost using WS, the cost will remain the same as NS. 

Hypothesis H3: We predict that the benefits of the smart 
validator and two-tier payment can be combined, so that 2T+WS 
will result in better utterance quality than 2T+NS.   

4.4 Analysis and Results 
To evaluate utterance quality, we computed the ratio of the 

valid utterances for each workflow. For 2T+WS and 2T+NS, we 
already have these results from the verification task. For 1T+WS 
and 1T+NS, we ran separate evaluation tasks to obtain the number 
of valid utterances. The cost for these evaluation tasks is not 
accounted in the cost of the total crowdsourcing task, as they are 
used for the purpose of this study and to measure the quality of 
utterances among different conditions.  

Figure 2 shows the ratio of valid utterances in each condition. 
A chi-square test revealed significant differences among conditions 
(χ2(1) =8.457, p=.004). The result supports our hypothesis H1, that 
using the two-tier payment achieved better utterance quality than 
using single-tier payment. In addition, the result also supports our 
hypothesis H2, that using WS achieved better utterance quality than 
NS. Finally, the result also supports our hypothesis H3, that the 
benefits of the two-tier payment and smart validator can be 
combined to improve utterance quality, as it has the highest ratio of 
valid utterances among all conditions.   

Our findings demonstrated that using smart validator, as 
compared to not using the smart validator, is a way to significantly 
increase the data quality with either no increase in cost or only 
marginally increasing the cost (e.g. 2T+WS costs 1.6% more than 
2T+NS). We also found that human verification is still more 
effective than using smart validator but can increase the cost. 
Finally, the two-tier payment scheme and smart validator can be 
combined to increase utterance quality.  

4.5 Discussion 
For the two-tier payment with smart validator (i.e. 2T+WS), we 

had expected that the workers would have been motivated by the 
payment structure and naturally wanted to perform well, resulting 
in similar utterance quality as compared to 2T+NS. However, the 
increase in utterance quality in 2T+WS led us to speculate that 
some workers who initially were not attentive realized that they 
needed to be more attentive after the smart validator prevented 
them from submission. 

In terms of cost, using the smart validator did not incur 
additional cost for 1T conditions. In 2T conditions, there was a 
small increase in the cost due to the fact that there were more 
subsequent payout to the crowdworkers as a result of more valid 
utterances generated from the data collection phase. Interestingly, 
the cost was very different, yet the utterance quality was quite 
similar between 1T+WS and 2T+NS conditions. Compared with 
the 1T+WS condition, which had 83.88% valid utterances, 2T+NS 
achieved 87.50% valid utterances, but at a four-fold increase in 
cost. From a cost-effectiveness perspective, one should consider 
whether the ratio of utterance acceptability using the smart 
validator is sufficient and that adding human-in-the-loop is really 
necessary for their application domain. 

 5    Adaptive termination strategy 
While we have considered the tradeoffs of cost efficiency and 

utterance quality in the previous section, the other aspect of the 
problem is the impact of data quantity on cost. Cost increases 
linearly with the amount of collected data, and it often may not be 
obvious how much training data is needed to continue improving 
the model performance [21, 23]. Thus, we are interested in whether 
a stopping criterion can be applied during the data collection phase, 
without hindering the downstream model performance. 

5.1 Dataset 
For this analysis, we collected a separate dataset according to 

the scenario described in Sec 4.2. For each of the 29 intents, we 
collected 748 utterances for a total of 21692 utterances. We then 
split the data into train (598 utterances per intent) and test (150 
utterances per intent) sets. 

 

 

Figure 1: Experimental conditions 

  

Figure 2: Ratio of valid utterance vs cost for each condition 
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5.2 Coverage 
To investigate an optimal stopping criterion for data collection, 

Kang et al. suggested using the metric of coverage to inform the  
choice of when to stop collecting more data [8]. Coverage models 
how well a training dataset covers the complete space of ways an 
intent can be expressed. It is also positively correlated with model 
accuracy and is an independent way to evaluate the quality of 
training data without training a model. For a given test set, we 
would want the training set to have as high coverage as possible. 

To calculate coverage, we first identify, for each test sentence, 
the most similar training sentence with the same intent, according 
to the pairwise sentence cosine distance measure 𝐷(𝑎, 𝑏). We then 
derive coverage by averaging the shortest distances for all 
sentences in the test set. For a given intent, the coverage is: 

 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = A
|CD|
∑ 𝑚𝑎𝑥H

ID(1 − 𝐷(𝑎, 𝑏))CD
K   (1) 

where 𝑋M  and 𝑌M  are the sets of utterances collected for intent 𝑖. 
Figure 3 shows the coverage for example intents as we vary the 
number of utterances.  

From the graph, we observe that the coverage curves differ by 
intent. For example, utterances collected for the intent of asking 
about the number of bedrooms reached a higher coverage with 
fewer utterances than the ones collected for intent “fee”. This 
suggests that there is a difference in the number of natural phrasing 
variations among intents, for example, someone can only thank 
another person in a few ways (e.g. “Thanks a lot” or “thank you”) 
while he can talk about his budget for apartment hunting in many 
ways (e.g. “I am looking for an apartment that is not too expensive” 
or “I want to find a cheap apartment”). 

5.3 Adaptive strategy for data collection 
As observed in Figure 3, given the same amount of training 

data, different intents may reach different coverage due to the 
difference in the number of phrasing variations among intents. This 
prompts us to wonder whether we can use coverage to adaptively 
terminate data collection for each intent. The idea is that, rather than 
the common practice of crowdsourcing a constant number of 
utterance examples for an intent (a “fixed strategy”), we can 
adaptively terminate the data collection of each intent when the 
coverage of that intent exceeds a threshold (an “adaptive strategy”).  

To explore the effect of using this adaptive data collection 
strategy based on coverage, we performed a post-analysis to create 

a partial dataset from the dataset in Sec. 5.1 by using the adaptive  
strategy. For each intent, we first divided the entire data into 
batches of 10 utterances. For a given batch, we then calculated the 
coverage for that intent. When the coverage of that intent exceeded 
a threshold, 𝜃, we no longer added that to the partial dataset. For 
this study, we used a 𝜃 of 0.69.  

In order to examine the relationship between coverage and 
model performance, we trained an intent classifier using a multi-
layer perceptron (MLP), which has been demonstrated to provide 
competitive results on text classification task [2, 15, 20]. For both 
cases, we applied a consistent set of text pre-processing steps: we 
tokenize and lowercase the text, remove punctuation, and 
lemmatize. For the MLP, the input dimension to the neural network 
was 4672, followed by two leaky rectified hidden layers, with 200 
hidden neurons each. The output layer was a softmax with the 
number of neurons equal to the number of possible intents.  

Using the test set, we compared the accuracies of the intent 
classifier trained using the fixed strategy vs. the adaptive strategy. 
Table 1 shows the result. Interestingly, the model performance is 
similar in both cases. Yet, the adaptive strategy trains the model 
with only 59.5% of the total collected data (e.g. 9027 out of 15167 
utterances), suggesting that model performance may already have 
asymptoted. This indicates that coverage is an effective stopping 
criterion that can be applied during the data collection process 
without training a model. Given our scenario, using this adaptive 
strategy would have been 40% more cost-efficient compared with 
the common approach of predefining a constant number of 
utterances during data collection. Our analysis serves as a 
recommendation for future utterance data collection efforts, as 
adaptive data collection based on per-intent coverage can be a cost-
effective method that examines each intent independently. 

6    Conclusion 
Training data is the key to building machine learning models, 

and finding the most cost-effective way to collect training data via 
crowdsourcing still remains an open question. In this paper, we 
considered several variations of commonly-used workflows for 
utterance collection.  Our findings demonstrated that using a smart 
validator can significantly increase data quality with no increase in 
cost. Though human verification was found to be slightly more 
effective than the smart validator, it also increased the cost 
substantially. We then demonstrated that using the metric of 
coverage can be a cost-effective way to adaptively terminate the 
data collection process while maintaining model performance. Our 
findings provide clear guidance for future data practitioners and 
demonstrate that it is possible to reduce costs without sacrificing 
data quality. 
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