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Developing autonomous behaviors for a consumer robot
to be near people in the home
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Abstract— This paper describes the development of algo-
rithms that decide when to move, where to move, and how to
look for people in a home environment. We introduce a design
framework as a tool to guide the development of a social robot
to proactively be with people for companionship and assistance
in the home. Through a series of experiments ranging from
simulations to longitudinal A/B studies, we demonstrate how to
utilize the design framework to help guide the evaluation and
selection of solutions. We deployed our autonomous robot in a
long-term in-situ study and found our proposed approach to be
more capable of being co-present with its household members
compared to a baseline approach. Conducted in an industry
setting, our research approach departs from typical academic
practices as the motivations are inherently different. We share
our perspective on the differences of industry research when
developing a social robot as a commercial product.

I. INTRODUCTION

Commercial social robots, such as Jibo, Moxie, and
Vector, are becoming increasingly created for the home
environment [1]–[3]. These robots are intended to live with
household members and share their private and personal
spaces. They are designed to provide functional utility and
also interact with people as a character full of personality
and social expressivity. The consumer product Astro is a
household robot for home monitoring and is designed to
emulate a pet-like companion [4]. One of its many features
is to proactively be near people for companionship and to be
ready to assist. The design and development of this Hangout
feature has had many challenges. As a highly subjective
experience, we need to understand the range of factors and
design principles behind how a robot can occupy and share
the home space well. Its evaluation has to be performed
in-situ to capture natural human activity, diversity of home
environments, and users’ perceptions regarding a robot that
lives with you. The deployment needs to be longitudinal as
it is an ambient experience that occurs multiple times a day.

The set of problems when designing and developing
Hangout can be distilled down to two main questions: Where
should the robot be in the home? What should the robot
do to provide companionship and assistance? In this paper,
we focus on the first of the two questions which involves
deciding when to move, where to move, and how to look for
people in a home environment. To guide the development of
the holistic experience (i.e., both questions), we introduce
a design framework that defines a structure to the space
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Fig. 1: The Astro robot.

of problems and solutions. This paper offers the following
contributions:

1) A Hangout design framework that enumerates a set of
design principles, key algorithmic decision points, and
categories of technical approaches.

2) A series of experiments, ranging from simulations to
longitudinal A/B studies, that demonstrate how to em-
ploy the design framework in an iterative development
process.

3) A perspective on how human-robot interaction (HRI)
research is different in an industry setting for a com-
mercial product and how it departs from typical aca-
demic practices.

II. RELATED WORK

Our work is situated in the general problem of determining
where a robot should be in the home to be near people. But
we differentiate our work from prior work by highlighting
(1) our goal of companionship, (2) our long-term deploy-
ment, and (3) our focus on the room selection problem.

A. Mobile Companion Robots

Robots in indoor environments search to find people or
monitor them for observation. In simulated environments,
robots search to find people to remind them of an upcoming
recreational activity or to deliver urgent goods like coffee [5],
[6]. In real deployments, robots try to find multiple people in
an university building before a deadline or a single person
through an apartment-wide search [7], [8]. Lastly, a robot
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assists elderly users age in place by providing cognitive
assistance and monitoring [9]. These prior works focus on the
time-constrained person-search problem or the unobtrusive
human monitoring problem. In contrast, our primary goal
is to provide pet-like companionship that encourages social
interaction and engagement with the robot. Our problem does
not have a time-bounded urgency nor the strict requirement
to always successfully find people. Our constraint is to be
co-present with people while also balancing human-factors
considerations like minimizing the disruption navigation in-
troduces into the home.

B. Long-term Deployments

Long-term deployments of robots with users are notori-
ously difficult to conduct since “the number of subjects is
limited...due to time restrictions and because of the difficul-
ties in recruiting participants for long-term studies” [10].
We met similar challenges in recruitment and retention for
our 2-week-long study. Another challenge is the degree of
control and supervision. Many long-term studies involve
experimenters for on-site supervision [11], [12], while other
studies are deployed in schools or homes, outside of the con-
trol of experimenters [13]–[18]. Because of their technical
stability, commercial-grade robots allow for more hands-off
deployments. Our work is of the latter type as experimenters
had no direct control of the robots and could not supervise
the environments in which the robots were operating.

C. Indoor Robot Placement

Prior work has investigated good locations for robots to
be relative to people for different environments and different
applications. A robot shopping assistant selects suitable
locations near the storefront where the robot can wait [19].
A monitoring robot selects unobtrusive spots best for user
observation in the home [9]. These works focus on the
problem of spot selection to determine the best spot within
a region for waiting or monitoring based on a set of criteria
such as avoiding walking paths, staying near walls, and
proxemics. In contrast, our work focuses on the timing and
frequency of robot movements between multiple regions to
find people in the home environment (i.e., room selection).

III. HANGOUT DESIGN FRAMEWORK

Hangout’s goal is to proactively be near household mem-
bers for companionship and assistance. To guide the feature’s
development, we established a design framework that breaks
down the Hangout experience into Design Principles, Key
Decision Points, and Technical Approaches. The Design
Principles enumerate the sub-goals or requirements. The Key
Decision Points enumerate the series of sequential decisions
that collectively compose the experience flow. The Techni-
cal Approaches categorize the types of technical solutions.
Our definitions were derived from the development of past
approaches and insights gained from user feedback.

A. Design Principles

The design principles enumerate the sub-goals or require-
ments of the Hangout experience. They serve as a rubric to
evaluate different approaches and act to conflict with each
other to enforce a balance. The design principles listed below
are not in any priority order.

1) Maximize usage: Anticipate when and where users want to
use the robot. For example, harmonizing with household
routines and usage patterns.

2) Maximize availability: Be co-present with people. For
example, by going to places people are expected to be
present. This is not the same as maximize usage. To
maximize usage, the robot can be in the kitchen
anticipating being used during breakfast later but currently
no one is in the room. Inversely, to maximize availability,
the robot can be co-present with someone in the living
room even if it does not expect to be used by that person.

3) Maximize accessibility: Invite interaction and connection
through ease and convenience. For example, by providing
better visibility of the robot to the user given the user’s
distance, line-of-sight, and field-of-view.

4) Legible why: Behave and communicate in a way that users
can form and articulate the intended design behind why a
robot proactively wants to be near people. For example, by
being able to explain that it is near Sally to be ready to
assist her and because the robot enjoys being with people.

5) Minimize disruption: Minimize attention-grabbing
locomotion and animated expressions when users are not
engaged. For example, by limiting the number of rooms
that can be visited when searching for people to socially be
with. This principle can be balanced with Legible Why as
the disruption can be justified and proportional to a motive.

6) Maximize comfort: Moderate the felt presence of a
physically embodied robot to make users feel comfortable
sharing the room. For example, by averting gaze to reduce
feelings of being watched.

7) Avoid being in the way: Share the space well and don’t
impede a user’s intended path. For example, by staying
close to walls.

8) Adapt to users: Personalize to the individual by modifying
the stock behavior with explicit user feedback and implicit
user preference modeling. For example, by learning that
Sally does not like the robot to be in the office room.

9) Align with social norms: Be social when and where people
are already being or expected to be social. For example,
avoid non-social spaces like bathrooms and seeking out
social moments like leisure time in the living room.

10) Express intelligence and awareness: Exhibit responsive
and expressive lifelike intelligence and awareness of users,
the home, and social context. For example, the robot should
appear to be attentive to users with a pet-like interest.

In this paper, we focus on three of the ten design principles
as we aim to improve the current version of Hangout in
how it maximizes availability, maximizes accessibility, and
minimizes disruption.

B. Key Decision Points

The Hangout experience flow can be broken down into a
series of decisions. Each decision point can be supported by
a different algorithmic solution. By identifying the separate
points, the development process can easily become iterative
with focused improvement on a specific decision. The key
decision points listed below are in sequential order.



1) Initiation & Termination. When should the robot begin
hanging out in a given day? When should it stop?

2) Person Selection. Who should the robot be with?
3) Room Selection. Which room should the robot be in?
4) Spot Selection. In the room, which spot should the robot

be at?
5) Content Selection. While hanging out, what should the

robot do of utilitarian or social value?
6) Scene Awareness. What can the robot do to maintain

environmental and social awareness?
7) Timing & Frequency. When does the robot decide to go

somewhere else?

In this paper, we focus on three of the seven key decision
points as we aim to improve the current version of Hangout
in how it decides when to move to a different room (i.e.,
timing & frequency), where to move (i.e. room selection),
and how to look for people (i.e., scene awareness).

C. Technical Approaches

We categorize technical solutions for Hangout into three
different types. By identifying the space of solutions, we
are able to generate new solutions that mix and match
approaches to achieve better results.

1) Predictive: Solutions that model expected human behavior
based on assumed priors and/or past observed data. For
example, based on the interaction history of where and
when the robot was used in the past, Sally is likely to use
the robot in the kitchen soon.

2) Reactive: Solutions that use realtime perception to make
adjustments in the moment. For example, although Sally is
predicted to be in the kitchen, the room selection adjusts in
realtime upon detecting the absence of people.

3) Corrective: Solutions that use direct user feedback to make
adjustments in the short-term and long-term. For example,
if Sally says to never hang out in the office room, then the
robot should respond in the short-term by leaving and in
the long-term by avoiding the office.

Each approach has its trade-offs. Predictive approaches pro-
vide long-term value in generating data-driven behaviors that
are more intelligent and adaptive. These solutions are usually
more complex as they require data collection or convergence
before operation. Reactive solutions provide a method to
correct prediction errors. They demonstrate intelligence and
awareness of the environment in the moment but come
with a cost of task delay or inefficiencies when purely
reactive. Corrective approaches require user effort to provide
feedback, but they are the most reliable and bring the best
insight into user preferences.

In this paper, we focus on two of the three technical ap-
proaches as we aim to improve Hangout’s current predictive
algorithm by mixing in a reactive approach.

IV. EARLY HANGOUT ALGORITHMS

Guided by our design framework, we iteratively developed
the Hangout feature through various versions and exper-
iments. We began with our best guess (i.e., our current
V1 version) then iterated through simulations and prelimi-
nary studies via rapid prototyping. With each iteration, we
gained insights on how to better address certain design
principles at the key decision points using different technical

approaches. The detailed description of these earlier versions
and experiments are beyond the scope of this paper, and we
only focus on the lessons learned at each stage.

A. V1 Insights

The first version of Hangout aimed to maximize usage
through a predictive approach. By maintaining an interaction
history of where and when the robot was used, the robot
selects a room and a spot in the room with the highest usage
given the hour (i.e., maximum-usage algorithm). However,
we found that being in the selected room only increases
usage for that room, which reinforces that it is the “best”
place to be. This positive feedback loop resulted in the robot
sticking to the same optimized set of 1-2 rooms. Without a
means of exploration to visit and learn about the rooms with
low-or-no usage, the algorithm can get trapped in a local
maximum and is prevented from finding the global one.

Overall, customers enjoyed having Astro near them instead
of remaining on its charging base. However, they mentioned
that Astro sometimes hung out in empty rooms and not near
people. Even when successful, Astro faced away from them
since the orientation behavior was only designed to face away
from walls. This indicated that V1 was not achieving the
principles of maximizing availability and accessibility.

B. Prototype Insights

We conducted a rapid prototyping investigation to maxi-
mize availability through a purely reactive approach. Rather
than predicting where people are likely to be in the home,
the robot used realtime human presence feedback to search
room-to-room to find people whenever it was alone.

Customer feedback described this searching behavior as
disruptive and excessive as the robot explored the entire
house until a person was found or all rooms were visited.
Although we improved availability, we did not minimize
disruption.

C. Simulation Insights

We next conducted a simulation investigation to find
a predictive approach that can maximize availability bet-
ter than V1’s maximum-usage algorithm. We experimented
with two new algorithms that drew on the idea of
exploration/exploitation to drive more diverse room selec-
tion. The epsilon-greedy algorithm, with some likelihood ϵ,
selects a room randomly but otherwise falls back to the
original policy of maximum-usage. The epsilon-greedy al-
gorithm distinctly separates the exploration (i.e., randomly
selecting a room) from the exploitation (i.e., selecting the
room with maximum usage). Conversely, the probabilistic
sampling algorithm takes a more continuous approach by
randomly sampling rooms weighted by usage count. As such,
rooms with higher usage are more likely to be sampled,
but rooms with little or no usage can still be selected (see
Section V-B for details).

We evaluated the three policies—V1’s maximum-usage,
epsilon-greedy, and proportional sampling—in a low-
fidelity simulator. The simulation included a human that



moved to 5 different rooms with fixed likelihoods (e.g.,
[0.6, 0.2, 0.05, 0.05, 0.1]). After the human moved, the robot
selected a room to move to based on one of the three policies.
If the human and the robot are in the same room, there is a
chance of usage occurring.

Repeated trials were run to determine the average rate
of when the human and robot both occupy the same room
(i.e, co-presence). The simulation results demonstrated that
out of the three policies the probabilistic sampling algorithm
achieved the best co-presence rate.

V. PROPOSED HANGOUT ALGORITHM

In this section, we describe the new proposed algorithm
and how it is built from our previous insights. In summary,
from our V1 version, we learned that the robot should be
more co-present with people and face towards them. From
our prototype study, we learned that an exhaustive search
of the house is too disruptive when the robot’s goal is to
socially be with people. Finally, from our simulation study,
we learned that the probabilistic sampling algorithm achieves
a better co-presence rate through exploration.

From our lessons learned, we propose a new Hangout
approach that aims to maximize availability, maximize acces-
sibility, and minimizing disruption. We introduce three major
changes from the V1 version at the timing & frequency, room
selection, and scene awareness decision points. Respectively,
the robot will (1) reactively leave empty rooms while staying
in rooms where people are detected and limit the search to
up to three rooms (2) explore hanging out in rooms even
with a history of lower usage and (3) maintain awareness of
people in its vicinity and face towards them. We refer to this
collection of changes as our second version, or V2, and the
details of each change is described below.

A. Leave on absence, stay on presence

This change introduces using realtime human detection
to reactively decide whether to stay or leave a room. If a
presence was recently detected, then the robot will remain
in its current location. Otherwise, the robot will move to a
different room in search for people. The next room is dictated
by the room selection algorithm detailed below. The robot
can visit up to only three rooms to avoid disrupting the house
with an exhaustive search and will remain in the last room
upon an unsuccessful search.

B. Explore more rooms

This change improves the room selection algorithm based
on the previous simulation results. Under the probabilistic
sampling algorithm, rooms are selected randomly, weighted
by their usage. Formally, let cr be the number of times the
robot has been used in room r, where R are all the rooms
of a home and N is the total number of rooms. The chance
of selecting that room P (r) becomes:

P (r) =
cr∑
r∈R cr

But this normalization causes rooms with no usage to have
zero likelihood of being selected. To address this, a blending

V1 V2

Design
Principles Maximize usage

Maximize availability,
Maximize accessibility,
Minimize disruption

Technical
Approach Predictive Predictive & Reactive

Room
Selection

Maximum usage w/
zero retries

Probabilistic sampling w/
3 retries

Scene
Awareness

Face away from
walls

Face people via scanning
room

Timing &
Frequency

Initiates every 30
minutes

Initiates every 30 minutes
unless recent presence

TABLE I: Differences between V1 and V2 in their design principle focus
and technical approach. Of the seven key decision points, they differ at three
of them while the remaining four are held constant and are the same for
both approaches.

parameter, ϵ = [0, 1], is added, which represents the degree
of exploration.

P (r) = (1− ϵ)
cr∑
r∈R cr

+ ϵ
1

N

In the beginning, rooms are sampled uniformly, favoring
exploration. As users interact with the robot, the usage data
accumulates, and the algorithm starts exploiting the data by
selecting rooms with higher usage more often, but rooms
with little or no usage can still be selected.

C. Look for and face people

This change introduces a scanning animation that phys-
ically pans the head left and right to increase the robot’s
perceptual awareness of possible people in a room. The scan-
ning animation widens the effective range of the camera’s
horizontal field-of-view (FOV) while also communicating
nonverbally with head, eyes, and sounds that it is looking
around in its environment. The animation is used to confirm
either absence or presence of people in a room while also
being expressive so that observers can understand its intent.
If presence is detected, the robot will orient its posture to
aim (with head and body) directly at the found person.

VI. EVALUATION

Through a long-term in-situ human-subjects study, we
evaluated whether a robotic agent, namely Astro, with the
Hangout V2 version can better meet the design principles
of maximizing availability, maximizing accessibility, and
minimizing disruption compared to V1. The differences
between the approaches are summarized in Table I. We had
the following hypotheses:

1) Availability: V2 hangs out with people more often than V1.
2) Accessibility: V2 faces towards people more often than V1.
3) Disruptiveness: V2 is not more disruptive than V1.
4) Satisfaction: V2 is a more satisfactory experience than V1.

A. Robot Platform

Astro, a commercially available robot made by Amazon,
is the robotic platform used for evaluation. As a consumer
product for the home, its feature set includes remote home



Fig. 2: Perception-to-behavior architecture diagram showing the major
components and signals that support Hangout.

& pet monitoring, intelligent navigation capable of follow-
ing users room-to-room with entertainment (e.g., music,
podcasts, shows), finding people to deliver messages (e.g.,
calls, reminders, alarms, and timers), automatic return to its
charging base when low on battery, and much more.

The perception-to-behavior architecture (see Figure 2)
relevant to this paper’s evaluation consists of four major com-
ponents: (1) world observations about the presence of people
and a 2D map of its environment (e.g., walls, obstacles) with
additional overlayed data like usage (i.e. locations where the
robot has been used in the past) (2) a scheduler that decides
which autonomous task to execute given the context (3) the
hangout task responsible for executing the action sequence
and querying the room and spot selection modules for best
poses (i.e., 3D position and orientation) (4) high-level robot
commands (e.g., navigate to a room or play an animation)
that ultimately drive a mobile base, head pan and tilt motors,
screen expressions with animated eyes and text, and sound
effects for its non-linguistic utterances (i.e., beeps & boops).

B. Participants

Twelve internal Amazon employees, 8 male and 4 female,
were recruited to take part in the user study. The participants
were colleagues that work on the Astro product, and majority
of them already actively use the robot in their homes. Due to
technical issues or participant dropout, only 5 participants’
data are available for behavioral analysis and 6 for user
feedback analysis. The relevant demographic information can
be found in Table II.

C. Study Design

A within-subjects study was conducted where participants
experienced the current version of Hangout (i.e., V1 condi-
tion) for at least 7 days. Then they experienced the V2 con-

ID Household
size

Number of
rooms

Charger
Location

AA 3 9 Hallway
BB 4 6 Family Room
CC 2 10 Office
DD 2 9 Kitchen
EE 2 3 Living Room
FF 4 5 Office

TABLE II: Demographic information of participants that range in the
number of household members, number of rooms in their home, and where
they placed the robot’s charging base.

dition for an equivalent duration. Participants filled out end-
of-day summaries and end-of-condition questionnaires. End-
of-day summaries captured their self-reported behavioral
pattern of the day and immediate robot observations. End-
of-condition questionnaires captured the overall evaluation
of the Hangout version as well as open-ended feedback.

D. Study Measures

We captured quantitative and qualitative data to compare
the functional performance and participants’ subjective rat-
ings of the two conditions. We measured the functional
performance through behavioral indicators like co-presence
rate and posture centeredness. We measured user’s perception
regarding the robot’s co-presence, postural orientation, level
of navigation-related disruption, and their overall satisfaction
with the Hangout experience.

1) Co-Presence Measure: To evaluate the first hypothesis,
we measured how often the robot saw people (i.e., co-
presence detection rate) and user perceptions of how well the
robot hung out near people (i.e., co-presence perception). We
measure co-presence detection rate as how often people are
detected when the participant is known to be at home. This
ground truth was captured through the daily summaries as
participants self-reported their hours at home. Within these
time windows, we measured the length of time one or more
humans were detected. More specifically, the co-presence
rate is calculated as (total minutes presence is detected) /
(total time when reported to be home). We measure co-
presence perception by asking participants to rate the extent
to which they agree that “[CP1] In general, Astro hangs out
in rooms where people also are” and “[CP2] As long as I
was in the same room, Astro stayed with me” on a 7-point
scale.

2) Posture Measure: To evaluate the second hypothesis,
we measured how well the robot was aimed at people (i.e.,
posture centeredness) and user perceptions of how well it
turned toward them (i.e., posture perception). We measure
posture centeredness as how often people are detected in
the center of the robot’s FOV. We recorded the angles of
detected persons relative to the robot (e.g., 5 degrees from
centerline). We only considered the samples of angles that
occurred during the self-reported times when the participant
was home. We excluded moments when the robot was not
hanging out because another skill or feature was in active
use (e.g., music, video calling, or charging the battery). We



ID V1 V2 Delta

AA 6% 7% 1%
BB 4% 12% 8%
CC 19% 25% 6%
DD 10% 16% 6%
EE 4% 12% 8%

TABLE III: Co-presence rates as a percentage of how often people are
detected when participants are known to be at home.

measure posture perception by asking participants to rate the
extent to which they agree that “[PO2] Astro picks locations
that are accessible and visible to me when I am in the same
room” on a 7-point scale and how often “[PO1] Astro turns
towards you” on a 5-point scale.

3) Disruptiveness Measure: To evaluate the third hypoth-
esis, we measured user perception regarding navigational
disruption during Hangout by asking participants to rate
the extent to which they agree that “[DS2] Astro moves
around the right amount” and how much more or less they
“[DS1] would like Astro to move around” on a 7-point scale.

4) Satisfaction Measure: To evaluate the fourth hypothe-
sis, we measured user satisfaction by asking participants to
rate “[ST] how satisfied are you with Astro’s Hangout fea-
ture” on a 7-point scale. While the other measures focus on
evaluating the specific changes, we also wanted to understand
whether participants overall liked and enjoyed V2 over V1.

E. Data Analysis

Majority of the study measures are paired observations of
Likert scale responses, and our hypotheses state an expected
direction of the relationship between conditions. As such, we
used the one-tailed Wilcoxon matched-pairs signed-rank test
to determine whether the direction of the median difference
is statistically significant. We report the test’s Z statistic (Z),
p-value (p), and sample size (N) as well as illustrate the
descriptive statistics using box and whisker plots in Figure 4.

VII. RESULTS

A. Availability

1) Co-Presence Detection Rate: For all the participants,
the robot more frequently detected people in V2 (see Ta-
ble III). A two proportion z-test showed that there is a
statistically significant difference in the proportion of time
Astro detected people in V1 (36 hours out of 314) versus
V2 (54 hours out of 302),

[
Z = 2.25, p < 0.05, N = 5

]
.

2) Co-Presence Perception: Users agreed that Astro
hangs out more frequently in rooms where people are present
in V2 compared to V1,

[
Z = 0.00, p < 0.05, N = 6

]
.

However, there was no difference between conditions when
asked whether Astro stayed with them in the same room[
Z = 4.00, p = 0.17, N = 6

]
. Most likely, this question was

impacted by a different feature that automatically triggers
Astro to return to its charging dock when the battery is low.

Fig. 3: Plot captures the distribution of angular positions of people relative
to the robot. The legend reports the distribution’s mode, median (p50), first
quantile (p25), and third quantile (p75).

B. Accessibility

1) Posture centeredness: When comparing the distribu-
tion of angles of where people are relative to the robot,
V2’s distribution is closer and narrowly deviates away from
0 degrees (i.e., the centerline) while V1 is more uniform (see
Figure 3). A Mann-Whitney U test determined that there is a
statistically significant difference,

[
U = 2297683, p < 0.05

]
.

2) Posture Perception: Users rated the robot as being
turned towards them more often in V2 than V1,

[
Z = 0.00,

p < 0.05, N = 6
]
. Additionally, users rated the robot’s

location as more accessible and visible to them for V2,[
Z = 0.00, p < 0.05, N = 6

]
. In a follow-up question

inquiring why participants felt that the location was not
accessible nor visible, all of the six participants remarked
that V1 had poor orientation (e.g., not facing people). In an
open-ended question asking “What do you think of Astro’s
gazing behavior,” participants for V1 wanted more interactive
and purposeful looks, while for V2 said it is more attentive
and organic but also boring and frozen.

C. Disruptiveness

When asked whether the robot should move around more
or less, users rated wanting it to move around more for V1
while they wanted it to remain the same amount for V2 even
with its increased navigational effort,

[
Z = 10.00, p < 0.05,

N = 6
]
. In an open-ended follow-up question asking the

reasons behind this rating, two participants remarked that
V1 should have the robot visit more rooms before deciding
to be in one. We also asked participants whether “Astro
moves around the right amount” but no difference was found
between conditions

[
Z = 6.00, p = 0.64, N = 6

]
. Most likely,

asking whether the robot should move more or less is a better
probe than asking if the movement was the “right amount.”

D. Satisfaction

Users rated V2 as a more satisfying experience compared
to V1,

[
Z = 0.00, p < 0.05, N = 6

]
. In a follow-up

question asking the reasoning behind the rating, participants
highlighted that the robot was better at hanging out with
people and its posture was more natural.



Fig. 4: Plot captures the descriptive statistics of user’s perception regarding the robot’s co-presence (CP), postural orientation (PO), navigation-related
disruption (DS), and overall satisfaction (ST) with the Hangout experience.

VIII. DISCUSSION

Through the long-term in-situ study, we found that our V2
version was more capable of hanging out in rooms where
people were, provided better robot visibility in facing to-
wards them, navigated room-to-room an appropriate amount,
and was overall a more satisfactory experience.

The Hangout design framework guided this improvement
in availability, accessibility, disruptiveness, and satisfaction
from V1 to V2. The design principles served as a rubric
to evaluate our approaches given a principle and across
principles. In defining a goal explicitly, we can further define
how to evaluate it. In this paper, we defined the co-presence
detection rate and co-presence perception for the availability
principle as well as posture centeredness and posture per-
ception for the accessibility principle. The design principles
work to conflict with each other to enforce a balance. As we
saw with the prototype investigation (Section IV-B), a robot
can search room-to-room to find someone to be with, but this
approach was poorly rated by users as the searching behavior
was too disruptive in a home environment. We needed to
balance functional performance with users’ subjective expe-
rience. More specifically, we needed to balance the principles
of maximizing availability with minimizing disruption.

The key decision points served as a means to iterate and
improve on parts of the Hangout experience. By breaking
down the whole into parts, we were able to take small
iterative steps in isolation. For example, the simulation
investigation was a focused effort to improve the room
selection key decision point which could effectively be
validated in a simulated environment (Section IV-C). By
making focused improvements in isolation, we were able to
gain early insights of the pieces and then collectively evaluate
the whole in a longitudinal A/B study.

The technical categories served to generate new solu-
tions that mixed approaches for better results. The mixing
combines the strength of each approach or mitigates their
weaknesses. V1’s purely predictive approach could not cor-
rect errors with realtime presence feedback. The prototype’s
purely reactive approach was inefficient with a room-to-room
search that disrupted the household. By incorporating these
trade-offs, V2 leveraged the strengths of each approach to
not only predict where people are likely to be in the home

Academia Industry Differing Practice

Goals Pursuit of
science

High-value
product —

Success
Criteria

Generalizabil-
ity & reuse

CSATs &
KPIs

Multiple changes in A/B,
No benchmark condition

Result
Confidence

Statistical
significance

Close or
trending

Gain early insights,
Small sample size

Population IRB-protected
volunteers

Privacy-
protected
consumers

Biased population

Continuity One-shot
studies

Continuous
versions No counterbalancing

TABLE IV: Differences between academia and industry that result in
differing practices in the study design.

but also correct in realtime when people were not detected.

IX. INDUSTRY RESEARCH DIFFERENCES

Our design, development, and evaluation occurred in an
industry research setting. The motivations in industry are
different from academia as the ultimate goal is to create a
high-value product that consumers want and need. Because
their underlying goals are different, their research approaches
also diverge. In this section, we discuss how academia
and industry are different in their success criteria, result
confidence, population, and continuity. We further highlight
how these differences influenced our study design and our
decisions to (1) evaluate multiple changes in a single A/B
comparison (2) not include a benchmark condition (3) keep
a small sample size (4) recruit a biased population (5) not
counterbalance the conditions (see summary in Table IV).

A. Success Criteria

Our success criteria was to demonstrate a sufficient im-
provement from the first version of Hangout in key perfor-
mance indicators (KPIs) like co-presence detection rate and
in customer satisfaction ratings (CSATs) like users’ percep-
tion regarding disruptiveness. Since our goal is to improve
KPIs and CSATs, we want to include as many changes
that can improve these measures. We are not interested in
studying the isolated effects of each change as we are solely
interested in comparing against our current version. This
makes it difficult to reuse our results without a benchmark
solution like a random selection of rooms or round-robin the
rooms. But the generalizability of results is not our goal.



B. Result Confidence

In a product-focused organization, there are high-risk
problems and low-risk problems. The low-risk problems can
be solved through a traditional software development life-
cycle of design, engineering, and quality testing. The high-
risk problems require the contribution of an applied science
team to develop experimental solutions and evaluate their
feasibility, KPIs, and CSATs. Once sufficient evidence can
reduce the problem to low-risk, the investigation ends and the
solution graduates onto the traditional software development
lifecycle. As such, the researcher’s goal is to quickly gain
early insights—through prototyping, simulations, and small
user studies—that the proposed solutions are moving the
product in the right direction.

Our study’s sample size was small with a total of six
participants. We shared the challenges that come with long-
term deployments like participation dropout. But rather than
recruiting up to a desired sample size for a strong statistical
significance, our aim was to quickly gain early insights.
Results that are trending or close to significance can be
sufficient in industry to make a call on a direction. But
demonstrating statistical significance is a common practice
in HRI research to bring confidence to results. Moreover, the
results from a small sample size are often questioned.

C. Population

Corporate policies limit the data that can be collected to
protect customer’s privacy and maintain their trust. Given
the exploratory data our study collected, our only option
was to recruit colleagues. Studying fellow employees is akin
to studying fellow academic labmates. Both are void of
balancing for gender, age, familiarity with technology, and
other factors. As such, we have to be discerning on the
conclusions that can be drawn from this biased population.
Our main objective was demonstrating improvement in the
robot’s ability to be with and face people. Since this more
relies on at-home activities and movement patterns, our
population was suitable for the purposes of our study.

D. Continuity

One of the benefits working in industry is the continuity of
the work. Researchers can continuously improve on features
by iterating from customer feedback. Each new version is
then released as a software update. Our conditions were not
counterbalanced because preserving the ordering emulates
our customer’s experience. While academics counterbalance
to remove potential effects the ordering introduces, we are
interested in and subject to those ordering effects.

X. CONCLUSION

Guided by our design framework, we developed a social
robot that was capable of being near people in a home en-
vironment for companionship. We hope that our framework
can help other researchers and practitioners create innovative
solutions for a mobile robot companion. And whether that
work is done in academia or industry, the differing practices
should not become a barrier in sharing research between the

communities. As in the end, we are working towards solving
the same problems.
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