
  

  

Abstract— To provide personal and location-dependent 
services in public spaces such as shopping malls, it is important 
to be able to estimate the positions and identities of people in the 
environment. Sensors in the environment reliably detect their 
current positions, but it is difficult to identify people using these 
sensors. On the other hand, signals from wearable sensors can 
be used to identify people correctly, but precise position 
estimation remains problematic. In this paper, we describe a 
novel method of integrating laser range finders (LRFs) in the 
environment and wearable inertial sensors.  Time sequences of 
angular velocities estimated from both LRFs and wearable 
sensors are matched to identify people. Examples of tracking 
individuals in the environment that confirm the effectiveness of 
this method are shown. 

I. INTRODUCTION 
RECISE location information in public spaces provides 

useful cues for many kinds of services. One important 
application type is security services that identify and locate 
people in the environment. Another is information services 
that provide personal and location-dependent information to a 
mobile information terminal. For location-dependent 
applications, the technical challenge is to locate a specific 
person carrying a mobile information terminal in a crowded 
environment. 

Since many people carry cellular phones with them in their 
daily lives these days, and cellular phones are becoming 
powerful mobile information terminals, a location system that 
uses cellular phones is realistic for a public information 
infrastructure. In this paper, we propose a method that locates 
people carrying a mobile device precisely and continuously. 

In ubiquitous computing, many kinds of wearable devices 
have been used to locate people. Since a location system 
using ID tags requires the installation of many reader devices 
in the environment for precise localization, it is unrealistic to 
use it in large public spaces. Wearable inertial sensors are 
also used to locate people, but the cumulative error in 
estimation is often problematic. For a precise location system, 
it is important to integrate other sources of information. 

Location systems using sensors installed in the 
environment have also been studied. For example, location 
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systems using cameras and laser range finders (LRFs) can 
track people in the environment very precisely. However, it is 
difficult to locate a person carrying a specific wearable device 
by using only environmental sensors. 

For the problem of locating a person who has a specific 
mobile device, a promising and realistic approach is to 
integrate environmental sensors that observe people from the 
environment and wearable sensors that observe the person 
carrying them. In this paper, we propose a novel integration 
method of LRFs in the environment and wearable gyroscopes 
and accelerometers to locate people precisely and 
continuously. Since location systems using LRFs are 
successfully applied for tracking people in large public spaces 
like a train station and the size of each LRF is becoming 
smaller, LRFs are appropriate for installing in public spaces. 
Since cellular phones are expected to have inertial sensors for 
many kinds of applications, users who have a cellular phone 
do not have to carry any additional devices.  

The rest of this paper is organized as follows. First, we 
review relevant literature about locating people. Then, we 
discuss a method of integrating environmental and wearable 
sensors and how it can provide reliable estimation. Finally, 
we discuss the application of our method to a practical system 
and present the results of an experimental evaluation. 

II. RELATED WORKS 
There are three approaches to locating people in an 

environment: using environmental sensors, using wearable 
devices, and using a combination of both types. 

A. Locating People using Environmental Sensors 
Person position location has frequently been studied in 

computer vision [9]. One advantage of using cameras is that 
we can use a lot of information including colors and motion 
gestures. A problem with cameras is that they suffer from 
changes in the lighting conditions in the environment. 

LRFs have recently attracted increasing attention for 
locating people in public places. Since they have become 
smaller, it is now easier to install them in environments. Since 
LRFs observes only the positions of people, installation of 
LRFs does not raise privacy issue. Cui et al. [4] succeeded in 
tracking a large number of people. Glas et al. [6] placed LRFs 
in a shopping mall to predict the trajectories of people.  

In general, sensors placed in the environment are good at 
locating people precisely. However, it is difficult to use them 
to identify people when they are walking in a crowded 
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environment. 

B. Locating People by Using Wearable Sensors 
In ubiquitous computing, wearable devices have been used 

to locate people [8]. Devices that have been studied include 
IR tags [16], ultrasonic wave tags [7], RFID tags [1] [14], 
Wi-Fi [2], and UWB [12]. If the device ID is registered with 
the system, the person carrying that specific device can be 
located and identified. However, tag-based methods require 
the placement of many reader devices in order to locate 
people accurately, so the cost of installing reader devices is 
problematic in large public places. Wi-Fi- and UWB-based 
methods do not provide enough resolution to distinguish one 
person in a crowd. Furthermore, if users of the system have to 
carry additional devices just to use the location service, the 
cost and inconvenience should also be considered. 

Wearable inertial sensors have also been used to locate a 
person by integrating observations [3] [5] [8]. Since integral 
drift has been problematic, it is important to combine 
observations with those of other sensors. Recently, a few 
types of cellular phones have started to incorporate inertial 
sensors, and some people are carrying them in their daily 
lives. Therefore, using inertial sensors for locating people is a 
promising approach. 

C. Locating People by Using a Combination of Sensors 
To locate and identify people in the environment, 

combination methods that integrate both environmental 
sensors and wearable devices have been studied.  

Kourogi et al. [11] integrated wearable inertial sensors, a 
GPS function, and an RFID tag system. Woodman and Harle 
[18] also integrated wearable inertial sensors and map 
information.Schulz et al. [15] used LRFs and ID tags to locate 
people in a laboratory, and they proposed a method that 
integrates positions detected using LRFs and identities people 
by using sparse ID-tag readers in the environment. Mori et al. 
[13] used floor sensors and ID-tags and identified people 
carrying ID tags. These methods focused on gradually 
identifying people after initially locating their positions 
roughly using ID tags when they approached reader devices. 
However, since these methods integrate environmental 
sensors and ID tags on the basis of their positions, it is 
difficult to distinguish them in a crowded environment. 

In contrast, our method integrates them on the basis of the 
motion of people. We use LRFs and wearable inertial sensors 
to observe the angular velocity of a person’s body. Then, the 
person carrying a specific device is located by selecting the 
sequence of positions that has the most similar angular 
velocity. Since our method uses motion-based integration, it 
does not suffer from the drift problem of inertial sensors. 

III. PEOPLE TRACKING AND IDENTIFICATION BY USING 
ENVIRONMENTAL AND WEARABLE SENSORS 

To locate each person who is carrying wearable sensors, 
we focus on angular velocity signals around the vertical axis 
that are observed from environmental and wearable sensors. 

After angular velocity is observed from two types of sensors, 
signals are compared to determine whether two signals come 
from same person.  

In this framework, the problem of locating the person with 
a wearable sensor is to compare the signal from the wearable 
sensor to all signals from the people detected by 
environmental sensors and selects the person with the most 
similar signal (Figure 1). 

A. Locating People and Estimating Angular Velocities by 
Using Environmental Sensors 

Our method expands upon the system described in [10] and 
uses a particle-filter-based algorithm to track people in the 
environment (Figure 2). In our tracking algorithm, a 
background model is first computed for each sensor by 
analyzing hundreds of scan frames to filter out noise and 
moving objects. Points detected in front of this background 
scan are grouped into segments within a certain size range 
and ones that persist over several scans are registered as 
human detections. 

Each person is then tracked by the particle filter using a 
linear motion model. Likelihood is evaluated on the basis of 
the potential occupancy of each particle’s position. For 
example, humans cannot occupy spaces that have been 
observed to be empty. 

A straightforward way of computing angular velocity from 
the detected positions is:  

Δ−−= /))1()(()( ttt xxv  

))(arg()( tt v=θ  

Δ−−= /))1()(()( ttt θθω ,  

where ωθ ,,,xv  are velocity vector, position vector, 
direction, angular velocity, respectively, and Δ is the 
sampling period. 

In general, the position and angular velocity of a person 
can change independently. However, when people walk in 
daily lives, changes in angular velocities could be mainly 
caused by changes of the walking directions. In fact, we 
found angular velocity estimated by using LRFs are similar to 
that observed by using wearable gyroscopes (Figure 3). 

 
Figure 2. Locate a person carrying a specific wearable device 

by matching wearable and environmental sensors
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B. Estimating Angular Velocities by Using Wearable 
Inertial Sensors 

The angular velocities around three axes are observed for 
each person by using body-mounted 3-axis gyroscopes. Only 
the angular velocity around the vertical axis is used, and this 
is computed as zGG eω ⋅=ω , where Gω is the observed 
angular velocity vector and ze is the unit vector of the 
vertical axis. In principle, ze is estimated by integrating the 
angular velocity signals [17], but the drift error grows with 
time. Therefore, we use accelerometers and compute the 
short-time average of the observation to estimate ze : 

∑−=
L

t
z t

Lg
)(1ˆ ae , 5) 

where a  is the acceleration vector and g  is the gravitational 
constant. In the experiments, we set the length L to the 
number of samples for 10 s. 

Though this estimation is incorrect when people are 
walking, it does not suffer from drift error. In preparatory 
experiments, we confirmed that this simple averaging can be 
used to estimate ze  for our purpose. 

When body motion is measured using inertial sensors, the 
sensor’s attachment position is important. In preparatory 
experiments, we tested three different attachment positions: 
on the head, chest, and waist. We found that the results for the 
head-mounted sensor were noisy, while the results for the 
other positions were adequate and almost the same. In the 
following experiments, the inertial sensor was placed on the 
person’s chest. 

C. Integration by Matching Time Sequence of Angular 
Velocity from Both Sensors 

Then, the location of the person carrying specific 

gyroscope is computed by selecting the trajectory that 
minimizes the difference between time sequences of angular 
velocity between two sensors: 

 ∑
=
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where )(tωG  is the angular velocity of the specific person 
estimated from his/her gyroscope, and )()( tω j

L  is the 
angular velocity of person  j estimated from the LRFs.   

Smoothed angular velocity signals for 20 s from LRFs and 
from a gyroscope are shown in Figure 3. Though these signals 
were observed from different viewpoints, they are quite 
similar. 

Since observing a body’s angular velocity by using a 
gyroscope is straightforward and free from drift error and 
since positions are estimated precisely using environmental 
sensors, our method enables a robust and precise localization. 

IV. SENSOR INTEGRATION CONSIDERING 
CONFIDENCE IN OBSERVATION 

A. A Probrem of Estimating Angular Velocity using Position 
Sensors 

The simple method of comparing angular velocities (Eq. 
(1)) does not always provide reliable results. Angular 
velocities estimated using LRFs and gyroscopes are shown in 
Figure 4. In the data for 20 s, the estimated angular velocities 
differed significantly when the person stopped and changed 
direction. This difference arises because the error in the 
angular velocity estimated using LRFs is larger when the 
velocity is low. In general, when a target’s angular velocity is 
estimated using position-observing sensors, the confidence in 
the estimated value depends on the target’s velocity. Typical 
changes in confidence while estimating direction are shown 
in Figure 5. When the position is observed with a certain 
precision, the direction is estimated from the difference 
between the subsequent positions. The estimated direction is 
limited to a certain distribution according to the target’s 

   
a) Trajectory 

 
b) Angular velocity 

Figure 3. An example signals from LRFs and a gyroscope in 20 
seconds.  a) Estimated trajectory using LRFs. b) Estimated 
angular velocities. The vertical axis is the angular velocity.  
Two signals are quite similar.

  
a) Observations by LRFs    b) Estimated positions of people 

 
c) Examples of scenes and estimation results 

Figure 2. Person position estimation using LRFs 
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velocity (Figure 5 (a)). However, if the velocity is low, the 
distribution is broad and the confidence is low (Figure 5 (b)). 
Since angular velocity is estimated from the difference in 
directions, the confidence in the angular velocity also 
depends on the target’s velocity. This causes a problem when 
we locate people on the basis of Eq. (1) 

B. Evaluating Confidence in Observed Angular Velocity 
When we observe positions by using sensors in the 

environment and estimate angular velocities, the confidence 
in the estimated angular velocity depends on the person’s 
velocity. Since we cannot trust the estimated angular 
velocity when the velocity is low, a simple matching method 
using Eq. (1) will fail to locate the person carrying a 
wearable sensor. 

One approach for dealing with this problem is to consider 
the confidence in estimated angular velocity when matching 
angular velocities. To confirm the effectiveness of this 
approach, we introduce a simple cost function based on 
target’s velocity. 

C. Sensor Integration Based on Evaluating Cost Function 
The cost function uses a simple heuristic but is a robust 

method of evaluating observation confidence.  A weight term 
that depends on the target’s velocity is added to Eq. (1): 
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where the term var() represents the variance of the estimated 
angular velocity, which depends on the target’s velocity. In 
the following experiments, we approximated the variance of 
the angular velocity by using the simple formula: 

v
v Lσα 1sin)var( −=  , (3) 

where Lσ is the fixed standard deviation of the position 
sensor’s estimation error and α is a constant set to the value 
for which var is 1.0 for the average velocity. As shown in 
Figure 6, Eq. (3) is based on simple geometrical estimation. 

V. EXPERIMENTS 

A. Experimental Setup 
We conducted experiments in an entertainment/shopping 

arcade located near the entrance to Universal Studios Japan, a 
major theme park. We located people in a 20-m-radius area of 
the arcade containing shops selling clothing and accessories 
on one side and an open balcony on the other side. People in 
this area were monitored via a sensor network of consisting of 
five SICK LMS-200 LRFs mounted at a height of 85 cm 
(Figure 7).  We expanded the system in [10] by integrating 
wearable sensors to locate and identify people. 

Each person in the environment was detected and tracked 
with a particle filter. By computing the expectation of the 
particles, we estimated the position and velocity 25 times per 
second. This tracking algorithm ran very stably and reliably 

with a measured position accuracy of less than 6 cm for our 
environment [6]. 

Two people in the environment each carried one wearable 
sensor (WAA-006, ATR Promotions) with a three-axis 
gyroscope and a three-axis accelerometer (Figure 8). In the 
experiments, the observed angular velocity and acceleration 
signals were timestamped and sent to a host PC via Bluetooth.  

Since our method locates people by comparing angular 
velocity time sequences, it is important to adjust the clocks of 
the LRFs and wearable sensors. In the following experiments, 
the wearable sensor clocks were synchronized with the host 
PC when they initially established a Bluetooth connection.  

Another problem is the delay in the transmission from the 
wearable sensors to the host PC. In the following experiments, 
signals were sent with timestamps added by the wearable 

                 a) Larger velocity          b) Smaller velocity 

Figure 5. Relationship between the target’s velocity and the 
variance of the estimated angle. 

 
a) Trajectory 

 
b) Angular velocity 

Figure 4. Example of signals produced for a low walking speed.  
a) Trajectory in 10 s. The person stopped once and changed 
direction. b) Estimated angular velocity signals differed 
significantly when the person stopped. 

 

Figure 6. Estimation of variance of the direction based on 
the observed position.  
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sensors. If the timestamp were set after the signals had been 
sent (e.g., by the host PC), the results would be affected by 
sudden transmission delays. 

B. Estimated Angular Velocities of a Walking Person 
The upper graph in Figure 9 shows the estimated angular 

velocity of a person who walked around in the environment 
while carrying an inertial sensor. The angular velocity was 
estimated by two different methods: using LRFs and using a 
gyroscope. The two estimates were similar and changed in a 
correlated manner except for a few times. The lower graph in 
Figure 9 shows the person’s estimated walking speed. It is 
clear that significant differences between angular velocity 
estimates occurred only when the walking speed was very 
low (dashed circles in the lower graph). 

C. The Effect of Introducing the Weight to the Cost Function 
The effect of introducing our weight function is shown in 

Figure 10. The upper graph shows the cost function computed 
without the weight (based on Eq. (1)) and the lower graph 
shows the result computed with the cost function (Eq. (2)). In 
the upper graph, the two lines sometimes touch and this could 
be the cause of failures. The lower graph enables the person 
to be distinguished from other people much more clearly.  

D.  Identification of Target People based on Cost Function 
Figure 11 shows clearly how our algorithm distinguished 

the person carrying an inertial sensor when there were many 
people in the environment. The graphs shows the computed 
cost function based on Eq. (2) between the sensor-equipped 
person and all the other people in the environment during a 
20-s period. The number of lines represents the number of 
people: there were several people in the environment. The 

cost function of the target person (solid line) is clearly lower 
than those of the other people (dashed lines) in the 
environment. This means that the cost function was lowest for 
the target person, who could be located very precisely using 
the tracking system using LRFs. 

E. Effect of the Length of Observations 
Comparative results for various lengths of the computing 

cost function (parameter T in Eq. (2)) are shown in Figure 12. 
It was difficult to locate the person from only instant 
observation. When T was set to at least 100 frames (about 4 s), 
the person was located almost correctly. In the bottom graph 
in Figure 12, for which T was set to 200 frames (about 8s), the 
result is very clear. 

VI. CONCLUSION 
In this paper, we described a method for precisely locating 

a person carrying a wearable sensor device by integrating 
environmental and wearable sensors. We used a network of 
LRFs and wearable gyroscopes and accelerometers to 
compute the angular velocity of each person’s body. By 
selecting from among the trajectories detected using LRFs the 
one minimizing the difference in angular velocity time 

        

Figure 7. Experimental environment in a shopping mall.  
Circles indicate the installed LRF network (left). SICK 

LMS-200 LRF (right) 

a) Without weight term (Eq.  (1) ) 

b) With weight term (Eq.  (2) ) 

Figure 10. Effect of introducing the weight term into the cost 
function. When the cost function was computed using the 
weight term (b), the person could be distinguished from other 
people very clearly. 

          

Figure 8. Wearable sensor device used in the experiments 
(left). The sensor was attached to the person’s chest (right). 

         

 

Figure 9. Upper graph: Angular velocity computed using LRFs 
(dashed line) and a gyroscope (solid line).  
Lower graph: Walking speed estimated using LRFs. When the 
person walks slowly (dashed circle in the lower graph), the 
angular velocity estimates differed significantly. 
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sequence, we could identify and precisely locate the person in 
the environment. 

We considered the problem of estimating angular velocity 
from position-observing sensors, and we devised a weighted 
cost function that reflects the confidence in the angular 
velocity estimation. 

Experimental results for locating people in a shopping mall 
show the precision of our method. Since LRFs are now 
becoming common and people are carrying cellular phones 
that contain inertial sensors, we believe that our method is 
realistic and can be a fundamental technique for location 
services in public places. 

REFERENCES 
[1] T. Amemiya, J. Yamashita, K. Hirota, and M. Hirose., "Virtual leading 

blocks for the deaf-blind: A real-time way-finder by verbal-nonverbal 
hybrid interface and high-density RFID tag space.," In Proc. IEEE 
Virtual Reality Conf., 2004, pp. 165-172. 

[2] P. Bahl and V. N. Padmanabhan, "RADAR: An in-building RF-based 
user location and tracking system," Proc. of IEEE INFOCOM 2000, 
Vol. 2, 2000, pp. 775-784. 

[3] L. Bao and S. S. Intille., "Activity recognition from user-annotated 
acceleration data," In Proc. of PERVASIVE 2004, Vol. LNCS 3001, A. 
Ferscha and F. Mattern, Eds. Springer-Verlag, 2004, pp. 1-17. 

[4] J. Cui, H. Zha, H. Zhao, and R. Shibasaki., "Laser-based detection and 
tracking of multiple people in crowds," Computer Vision and Image 
Understanding, Vol. 106, No. 2-3, 2007, pp. 300-312. 

[5] E. Foxlin, "Pedestrian Tracking with Shoe-Mounted Inertial Sensors," 
IEEE Computer Graphics and Applications, Vol. 25, Issue 6, 2005, pp. 
38 - 46. 

[6] D. F. Glas, T. Miyashita, H. Ishiguro, and N. Hagita, "Laser-Based 
Tracking of Human Position and Orientation Using Parametric Shape 
Modeling," in Advanced Robotics, Vol. 23, No. 4, pp. 405-428, 2009. 

[7] A. Harter et al., "The anatomy of a context-aware application," In Proc. 
5th Annual ACM/IEEE Int. Conf. on Mobile Computing and 
Networking (Mobicom '99), 1999, pp. 59-68. 

[8] J. Hightower and G. Borriello., "Location systems for ubiquitous 
computing," Computer, Vol. 34, No. 8, 2001, pp. 57-66. 

[9] W. Hu, T. Tan, L. Wang, and S. Maybank., "A survey on visual 
surveillance of object motion and behaviors," IEEE Trans. on Systems, 
Man and Cybernetics, Part C, Vol. 34, No. 3, 2004, pp.334-352. 

[10] T. Kanda, D. F. Glas, M. Shiomi, H. Ishiguro, and N. Hagita, "Who will 
be the customer?: A social robot that anticipates people's behavior from 
their trajectories," In Proc. 10th Int. Conf. on Ubiquitous Computing 
(UbiComp '08), 2008, pp. 380-389. 

[11] M. Kourogi, N. Sakata, T. Okuma, and T. Kurata, "Indoor/Outdoor 
Pedestrian Navigation with an Embedded GPS/RFID/Self-contained 
Sensor System," In Proc. 16th Int. Conf. on Artificial Reality and 
Telexistence (ICAT2006), 2006, pp.1310-1321. 

[12] K. Mizugaki et al., "Accurate Wireless Location/Communication 
System With 22-cm Error Using UWB-IR," IEEE Radio & Wireless 
Symposium, pp. 2007, 455-458. 

[13] T. Mori, Y. Suemasu, H. Noguchi, and T. Sato., "Multiple people 
tracking by integrating distributed floor pressure sensors and RFID 
system," In Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, 
Vol. 6, 2004, pp. 5271-5278. 

[14] L. M. Ni  et al., "LANDMARC: indoor location sensing using active 
RFID," Proc. of the First IEEE Int. Conf. on Pervasive Computing and 
Communications (PerCom 2003), 2003, pp. 407-415. 

[15] D. Schulz, D. Fox, and J. Hightower, "People tracking with anonymous 
and id-sensors using rao-blackwellised particle filters," In Proc. 18th Int. 
Joint Conf. on Artificial Intelligence (IJCAI'03), 2003, pp. 921-928. 

[16] R. Want, A. Hopper, V. Falcao, and J. Gibbons., "The active badge 
location system," ACM Trans. Inf. Syst., Vol. 10, No. 1, 1992, pp. 
91-102. 

[17] O. J. Woodman., "An introduction to inertial navigation," Technical 
Report UCAM-CL-TR-696, Univ. of Cambridge, 2007. 

[18] O. Woodman and R. Harle., "Pedestrian localisation for indoor 
environments," In Proc. 10th Int. Conf. on Ubiquitous Computing 
(UbiComp '08), 2008, pp. 114-123. 

     
a) Trajectories 

 

 
b) Angular velocity 

  
c) Cost function 

Figure 11. Results for locating a person carrying a wearable 
sensor in an environment containing several people. The upper 
graph shows the angular velocity estimates for the person: they 
are very similar. The lower graph shows the computed cost 
functions. The cost function of the person carrying the sensor was 
the lowest and this person was clearly located. 

  

 
Figure 12. The cost function computed for different time 
period T. The costs are computed for all people detected using 
LRFs. The ID of gyroscope is associated to the trajectory with 
the lowest cost. These graphs represents results for T = 0.5, 1, 
2, 4, 8 [s] from the top to the bottom. 
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