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A Framework for Realistic Simulation of Daily Human Activity

Ifrah Idrees1,∗, Siddharth Singh2, Kerui Xu2, Dylan F. Glas2

Abstract— For social robots like Astro which interact with
and adapt to the daily movements of users within the home,
realistic simulation of human activity is needed for feature
development and testing. This paper presents a framework for
simulating daily human activity patterns in home environments
at scale, supporting manual configurability of different personas
or activity patterns, variation of activity timings, and testing on
multiple home layouts. We introduce a method for specifying
day-to-day variation in schedules and present a bidirectional
constraint propagation algorithm for generating schedules from
templates. We validate the expressive power of our framework
through a use case scenario analysis and demonstrate that our
method can be used to generate data closely resembling human
behavior from three public datasets and a self-collected dataset.
Our contribution supports systematic testing of social robot
behaviors at scale, enables procedural generation of synthetic
datasets of human movement in different households, and can
help minimize bias in training data, leading to more robust and
effective robots for home environments.

I. INTRODUCTION

Development of a commercial robot to coexist with people
over the long term in a home environment is a challenging
task. For robot behaviors which depend on spatial interac-
tion with users, prediction of their locations, or long-term
adaptation to user behavior, it can be difficult to evaluate
performance effectively through on-device testing alone.

To support the development of behaviors like these for
Amazon’s Astro robot, we developed a simulation framework
for scalable generation of daily human activity, enabling
robot testing in a simulation environment with humans mov-
ing realistically throughout the home (Fig. 1). This approach
is not specific to Astro, and could be used for any social robot
or smart-home system designed for long-term deployment.

User simulation Simulation testing is needed when robot
capabilities depend on user behavior patterns. For instance,
if the robot is asked to deliver a message to a user and needs
to search the home for them, simulation testing is needed to
quantify the efficiency of the search and its success rate.

To be effective, these tests should be performed in a variety
of simulated homes, at various times of day, and with realistic
user behavior patterns. Regardless of whether the robot is
meant to learn and adapt to user behaviors or follow fixed
rules, realistic testing is necessary to robustly evaluate its
effectiveness before it can be released to real users.

Avoiding bias in training data There has recently been
a great deal of social awareness around the topic of bias
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Fig. 1. Left: Amazon’s Astro robot. Right: Gazebo-based simulation
environment used in feature development and testing for Astro.

in AI, both in popular media and in social robotics research
[9, 14, 4]. While there are complex and subtle aspects to this
topic, one common type of AI bias occurs when the training
data are not representative of the eventual users of a system.

In the context of the current work, if the testing scenarios
were all based on large homes with spacious floorplans, the
robot might not perform well in smaller homes. Similarly,
if the user behavior patterns in testing scenarios only repre-
sented working couples with children, the robot might not
perform well in the home of a single retiree living alone.

To avoid this kind of bias, it is important to ensure that
testing incorporates a diversity of floorplans and simulated
user behaviors representing a broad range of possible users.
Note that this work focuses on spatial and timing aspects of
human activity but not computer vision, so we do not directly
address common bias-related topics related to race, gender
or skin tone.

Manual tuning For a commercial product, systematic
testing is essential for prevention of regressions as features
are developed over time. Quality Assurance (QA) teams
develop thorough testing plans to cover both typical usage
patterns and any anticipated edge case conditions which
might cause failures. For this reason, the ability to hand-
craft and tune test cases is important, providing QA with the
ability to precisely specify user behavior for each test case.

Requirements The objective of this simulation framework
is thus to satisfy the following requirements:

1) Manual control over simulated behaviors
2) Configurability for different personas or lifestyles
3) Day-to-day variation of activity timings
4) Execution on a variety of different floorplans

This paper presents a novel framework for generating
configurable and variable schedules for daily human activity
satisfying the above requirements, enabling testing of robot
behaviors at scale in a simulation environment.
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II. RELATED WORK

A. Simulating human behavior

Simulation of human behavior is not new in HRI, and
it is often an important element of social navigation re-
search. Variants of the social force model [8] are often used
for modeling crowds and multi-person scenarios. Systems
such as SocNavBench [1] and SEAN [19] use playback
of prerecorded trajectory patterns based on real data as a
basis for evaluating robot navigational behavior. Kidokoro
et al. used models of observed pedestrian subgoals and
stochastically generated pedestrians to follow those routes
[12], and Kaneshige et al. found that using simulation of
pedestrian behavior in testing greatly improved the efficiency
of robot behavior development in a shopping mall [11].

These approaches all focus on short-term or local behavior,
often with anonymous pedestrians who appear and disappear.
Our focus in this work is to model longer-term behavior of
a persistent user (or users) in the home throughout the day.

B. Human schedule generation from data

Some work has focused on building generative models
based on captured human behavior data. Francillette et al.
developed a method for generating behavior trees from
historical activity data [5]. However, this work focused on
granular actions such as manipulation of cups and dishes,
whereas our interest is in longer-term movement around the
home. Elbayoudi et al. [3] proposed a system for simulating
activities of daily living for a targeted population of older
adults based on captured data using Hidden Markov Model
and Direct Simulation Monte Carlo methods, which, like our
work, was applied at the level of room-to-room transitions.

Patel et al. built generative models of daily life behavior
from crowdsourced activity schedules, using Gaussian mix-
ture models to capture average times and variability of daily
activities [15] but did not model sequence dependencies or
hard time constraints. Garcia-Ceja et al. [6] modeled daily
life activities using conditional random fields. However, their
focus was on estimation of human activity given accelerom-
eter data, rather than generation of synthetic data.

None of the models described above were intended to be
manually adjusted, whereas a primary aim of our work is
to provide designers and testers with manual control over
behaviors, although the ability to simulate behavior patterns
which imitate observed data is also of interest to us.

C. Existing Human Simulators

Virtual Home [16] and Alfred [17] work well in generating
probabilistic human motion patterns referred to as activity
programs over multi-step, short-term tasks, but do not focus
on modeling activity variation from day to day. To our knowl-
edge, there does not exist work that focuses on generating
varying daily activity schedules for different user profiles.

III. OUR APPROACH

The elements of our proposed framework are shown in Fig.
2, A designer first creates a schedule template specifying a
time sequence of abstracted activities for a simulated user’s

Fig. 2. Elements of the proposed simulation framework

day, including optional time constraints and ranges of vari-
ability for start times and activity durations. The schedule
generator processes this template to generate a set of varying
daily activity schedules. To support simulation in different
homes, several environment models are defined, each con-
taining a navigational floorplan, used for path planning
in the simulator, and a corresponding activity-to-location
map defining specific (x, y) coordinates for each activity.
The generated schedules are executed by the simulation
engine to move simulated users around the home according
to their scheduled activities throughout the day, generating a
diverse set of synthetic data scenarios containing day-to-day
schedule variations and a variety of home environments.

Activities are mapped to specific locations in the home.
For example, cooking → kitchen. For each floorplan, we
require an (x, y) location to be defined for each activity,
allowing the floorplans to be interchanged, so the same
schedule template can be used in different home layouts.

As the path-planning and obstacle-avoidance aspects of
the human motion simulator are not novel, we will focus on
the schedule generation aspect in this work. In the following
subsections, we discuss the technical contribution in detail.

A. Problem Formulation

This section will describe the schedule generation algo-
rithm. Let ST denote a schedule template consisting of an or-
dered sequence of n entries, where ST = {st1, st2, ..., stn},
and each entry sti = (ai, t

i
start, v

i
start, d

i, vid), containing
an activity ai, a start time tistart with variability vistart, and
duration di with variability vid. For each entry, ai is required,
but (tistart, v

i
start) may be defined or left empty, and (di, vid)

may be defined or left empty.
Next, let S denote a generated schedule consisting of an

ordered sequence of n entries, where S = {s1, s2, ..., sn},
and each entry si = (ai, t

i
start, d

i, tiend), containing an
activity ai, start time tistart, duration di, and end time tiend.

B. Iterative Bi-directional Constraint Propagation

Algorithm 1 describes our method for generating a con-
crete schedule instance S based on a schedule template ST .

1. Initializing Random Values The first step is to initial-
ize S from the constraints provided by the designer in the



template. In this step, random variation is added to (tstart, d)
from uniform distributions bounded by the specified ranges
(±vstart, ±vd). For each entry si, tend is initialized to null.

The next step is to iteratively populate any uninitialized
start and end times in S by alternating between two update
steps: applying duration constraints, and applying adjacency
constraints. Rules are also applied to eliminate gaps in the
schedule and avoid time conflicts.

Algorithm 1 Schedule Generation Algorithm
Input Schedule template ST
Output Schedule S

1: procedure GENERATESCHEDULE(ST)
▷ Step 1: Apply random initialization to activities

2: for each constraint sti ∈ ST do
3: si[a]← sti[a]
4: if ∃(sti[tstart], sti[vstart]) then
5: ∆t← U(−sti[vstart], sti[vstart])
6: si[tstart]← sti[tstart] + ∆t
7: end if
8: if ∃(sti[d], sti[vd]) then
9: ∆t← U(−sti[vd], sti[vd])

10: si[d]← sti[d] + ∆t
11: end if
12: end for

▷ Step 2: Iteratively propagate constraints in S
13: while ∃si ∋ ∄si[tstart] ∨ ∄si[tend] do
14: for each entry si ∈ S do
15: APPLYDURATIONCONSTRAINTS(si)
16: end for
17: for each entry si ∈ S do
18: APPLYADJACENCYCONSTRAINTS(si)
19: end for
20: if no entries were updated in either step then
21: FAIL(underconstrained)
22: end if
23: end while
24: end procedure

2. Solving Duration Constraints (Algorithm 2) Because
si[tstart] + si[d] = si[tend], we can determine the end time
of any si which has start time and duration defined, or the
start time for any si with end time and duration defined.

After each duration update, there may be a time conflict
with an adjacent or non-contiguous activity (as there may
be uninitialized schedule entries lying between two time-
conflicted activities). Our algorithm looks ahead to identify
these conflicts at the time a duration constraint is applied.

For example, if si[tend] > sj [tstart] ∋ j > i, then we
shorten si to end at sj [tstart]. Any activities between them
will be reduced to zero length and effectively deleted. This
procedure is applied both forwards and backwards.

Arguably, such a conflict could be treated as a schedule
resolution failure, but we considered it realistic to simulate a
situation where a user “didn’t get around to something” and
skipped some activities to meet an upcoming time constraint.

Uninitialized start and end times are updated in this way
for all applicable si.

Algorithm 2 Solving duration constraints
1: procedure APPLYDURATIONCONSTRAINTS(si)
2: if ∃si[tstart] ∧ ∃si[d] ∧ ∄si[tend] then
3: j = argmin{sj [tstart] where j > i}
4: si[tend]← min (si[tstart] + si[d], sj [tstart])
5: else if ∄si[tstart] ∧ ∃si[d] ∧ ∃si[tend] then
6: j = argmax{sj [tend] where j < i}
7: si[tstart]← max (si[tend]− si[d], sj [tend])
8: end if
9: end procedure

3. Solving Adjacency Constraints (Algorithm 3) The
next step is to update time constraints between adjacent ac-
tivities. Unlike the discrete activities recorded in the datasets,
which often have gaps between them, activities in our model
represent persistent spatial locations, so we do not allow
gaps between activities. Activities with uninitialized start
times are thus defined to begin when the previous task ends,
and activities with uninitialized end times conclude at the
start time of the next activity. If a gap exists between two
activities, the earlier activity is extended to end at the start
time of the later activity.

Algorithm 3 Solving adjacency constraints
1: procedure APPLYADJACENCYCONSTRAINTS(si)
2: if ∃si[tend] ∧ ∃si+1 then
3: if ∄si+1[tstart] then
4: si+1[tstart]← si[tend]
5: else if si+1[tstart] > si[tend] then
6: Extend current activity to fill gap
7: si[tend]← si+1[tstart]
8: else if si+1[tstart] < si[tend] then
9: FAIL(overconstrained)

10: end if
11: end if
12: if ∃si[tstart] ∧ ∃si−1 then
13: if ∄si−1[tend] then
14: si−1[tend]← si[tstart]
15: else if si−1[tend] < si[tstart] then
16: Extend previous activity to fill gap
17: si−1[tend]← si[tstart]
18: else if si−1[tend] > si[tstart] then
19: FAIL(overconstrained)
20: end if
21: end if
22: end procedure

4. Exit criteria The iteration of constraint resolution con-
tinues until there are no schedule entries left with unresolved
start or end times, indicating success.

The algorithm can fail to meet this condition if the
schedule template is underconstrained. Such cases can be
detected if no updates have been made to the schedule after a



round of applying both duration and adjacency constraints. In
these cases, the algorithm fails and no schedule is produced.

In other cases, the schedule may be overconstrained. That
is, a time conflict between two schedule entries cannot be
resolved by adjusting a single start or end time. Rather than
implementing complex logic to handle these cases, we chose
to allow the algorithm to fail in these situations.

C. Validation of Schedule Template

Because failure of the system to generate a valid schedule
would be problematic at run time, such as during automated
testing, we provide a design-time tool that designers can use
to validate the schedule templates they create. Our validation
algorithm is able to identify the following errors:

• Chronological errors in the template
• Under-constrained conditions where the time constraints

are insufficient to define a complete schedule
• Over-constrained conditions where overlapping activi-

ties result in unresolvable time conflicts
Because the process of schedule generation incorporates

randomness, our validation algorithm generates schedules at
the minimum and maximum extremes of the variance ranges.
If it can be confirmed that there are no overlapping activities
or underconstrained situations given these boundary values,
then the template is considered valid. These validation steps
are especially important for preventing failures during au-
tomated operations like regression testing or generation of
large-scale synthetic datasets of user schedules.

D. Integration with the robot simulator

As indicated in Fig. 2, the generated schedules were used
as one input into Astro’s simulator, along with a floorplan
and a mapping of activities to locations. The simulations
were executed in a photo-realistic simulator integrated with
Gazebo, with the human simulation module moving each
user to the target destination using an A* path planner with
local obstacle avoidance for their scheduled activities based
on the simulation wall-clock time.

The resultant simulation can be used in two ways. First,
the simulator can be used online with the robot software, to
test and evaluate robot behaviors executed in relation to the
simulated user(s). Alternatively, the output can be captured
as a rosbag and added to a test corpus for offline replay.

IV. VALIDATION: USE CASE SCENARIOS

To demonstrate the expressive power of the framework,
we present a set of use cases representing common schedule
patterns found in daily life and describe how they can be
represented in a schedule template using our framework, with
examples shown in Fig. 3. Where applicable, we also note
examples observed in the datasets studied later in Sec. V-C.

A. Scheduled activities

Some activities, like scheduled meetings and appoint-
ments, have fixed start times. In the datasets, aside from
wakeup times, rigidly-scheduled activities were almost never
seen. Much more common were loosely-scheduled activities

Fig. 3. Example schedule template illustrating use case scenarios. Start
variance, duration, and duration variance are expressed in hours and minutes.

where start times varying within a range. These activities,
such as meal times, might be tentatively planned for a
specific start time, but with the expectation that it may vary
significantly.

The proposed framework supports this flexibility by al-
lowing variance to be specified for the activity’s start time.
In Fig. 3, rows 1 and 9 show activities with variable start
times, whereas row 5 is rigidly scheduled for 12:00 PM.

B. Variable-length activities
While some activities observed in the datasets, like brush-

ing teeth or taking medicine, were fairly fixed in duration,
many daily activities required a variable length of time to
finish. This was observed in the datasets for activities such
as meals and computer work. In the proposed framework,
the duration variance can be used to control this variability.
In Fig. 3, “brush teeth” (row 3) is fixed-duration, but most
other entries have nonzero duration variance.

C. Sequences of activities
It is also common for activities to follow each other in

a sequence. For example, every public dataset we examined
included a sequential morning routine, such as showering,
breakfast, and then brushing teeth. Each of these typically
followed the previous activity rather than varying indepen-
dently. In such cases, it does not make sense to express start
times explicitly, but rather to chain together activities.

In the proposed framework, this can be achieved by setting
the start time for the first activity, but specifying only
duration and duration variance for the following activities.
An example of this is shown in rows 1-3 in Fig. 3.

D. End time constraints
Sometimes an activity is constrained to a fixed end time.

For example, preparation for a meal may need to be com-
pleted by a certain time, or a morning routine may need to
be finished by the time a person needs to leave for work.

This type of pattern is made possible by the backward-
propagation aspect of the algorithm. For example, consider
a “cooking” activity followed by a “dinner” activity (e.g.
rows 8-9 of Fig. 3). If “dinner” is given a fixed start time of
6:30pm and “cooking” is specified to have a duration of 1
hour but no fixed start time, then the end time of “cooking”
would be constrained to the start of “dinner” and its start
time would be pushed back to 5:30pm to fit the constraint.



E. Filling the time available

In other situations, an activity can be extremely flexible in
its duration, expanding to fill the time available. Activities
like watching TV or reading can fall into this category.

This kind of activity can be expressed by leaving both start
time and duration blank, allowing the propagated constraints
from other activities to implicitly define start and end times
for these flexible activities, e.g. in rows 4 and 7 of Fig. 3.

F. Comparisons with other approaches

There are many ways to specify schedules for simulations,
and there are benefits and drawbacks to any method. We
believe that our method has some advantages over other
approaches, as follows.

A naive approach might specify exact start and stop times
for tasks. Our approach provides control over variance of
start times and durations, an important consideration for data
which will be used to train machine learning systems, where
variability in the distribution of data is needed for robustness.

Some approaches use programmatic logic to control task
scheduling. While such approaches are extremely flexible,
they are also complex. The method proposed here contains
a small set of parameters which are still sufficient to express
the task categories listed above. Arguably, this can be simpler
for designers to manage, tune, and debug than a representa-
tion based on complex sets of rules and conditions.

Other approaches are stochastic, e.g. using probability
distributions to specify when tasks should be scheduled. One
drawback of such approaches is that it is difficult to ensure
the sequential execution of dependent sequences of activities,
which our proposed framework can provide.

V. EVALUATION: EMULATING CAPTURED DATA

Although our proposed method is primarily intended for
developing handcrafted schedules, we also evaluated how
effectively it could be used to create schedule data in
imitation of an example dataset.

For this evaluation, we performed comparisons with sev-
eral public datasets as well as one we captured on our own,
evaluating how closely we were able to emulate the activity
patterns in those datasets using our framework by measuring
similarity between the schedules generated by our template
and schedules from the original dataset.

A. Levenshtein distance as a similarity metric

To measure similarity between sequences, we used a
similarity metric based on Levenshtein distance. Similar
techniques have often been used to make quantitative com-
parisons between human motion trajectories [10, 2, 7, 18].

In our comparison, we first discretize each of the se-
quences to be compared into a state-chain representation,
where states are sampled at regular 1-minute intervals and
assigned the value of the action being performed at that
time step. The Levenshtein distance, denoted by L(S1, S2),
between action state sequences S1 and S2 of length n is
calculated as the minimum number of single-element edits
required to transform S1 into S2.

A measure of similarity between the state chains can
be obtained by normalizing the Levenshtein distance and
subtracting it from 1, as follows:

simLev(S1, S2) = 1− L(S1, S2)

n

B. Comparison method

The datasets being compared consisted of collections of
schedules, each containing several examples of daily sched-
ules collected for one user. To compare cross-similarity
between two collections of daily schedules, C1 containing
m schedule examples and C2 with n examples, pairwise
comparisons using simLev were performed between the
individual schedules, and the results were averaged.

simcross(C1, C2) =

∑m
i=1

∑n
j=1 simLev(C

i
1, C

j
2)

m · n
To help interpret the meaning of these similarity val-

ues, self-similarity scores were also computed within each
collection of schedules. The self-similarity metric provides
an approximate (although not strict) upper bound to the
similarity that could be achieved when attempting to imitate
a given collection of schedules. For a collection of schedules
C containing n examples, average self-similarity over all
combinations was computed as follows.

simself (C) =
2

n(n− 1)

∑
1≤i<j≤n

simLev(C
i, Cj)

C. Datasets for comparison

We evaluated the ability of our framework to emulate
examples from public datasets of daily activity schedules,
as well as a dataset of space transitions in daily activity that
we captured ourselves.

1) Public datasets: The following three public datasets
were used in this comparison. When necessary, an activity
designated “other” was added to fill gaps between activities.

HOMER Dataset: This dataset includes simulated ac-
tivity schedules generated based on self-reported schedule
information collected via Amazon Mechanical Turk. We used
the “test” data for household 0, consisting of 12 activities
tracked over 10 days. [15]

ADL Dataset: A dataset containing manually-labeled ac-
tivities of daily living performed by two users on a daily basis
in their own homes. We used data from user 1, comprising
10 activities tracked over 14 days. [13]

GENEActiv Dataset: This is a smartwatch accelerometer
dataset. We used the manually-annotated activities for user
1, featuring 7 activities tracked over 11 days. [6]

2) Self-collected data: The above public datasets tracked
daily activities, but reported activities were sparse and did not
exactly correspond to locations. For our robot applications,
our primary interest is in activities representing location
changes within the home. Thus, we collected an additional
dataset ourselves, tracking a single participant (one of the



Fig. 4. Results of manual fitting of schedule templates to reference datasets. Each graph shows activities over a 24-hour period (activity names omitted
for readability). The upper graph of each pair represents the original reference data, and the lower graph shows data generated by our algorithm.

authors of this paper) across 7 discrete regions of the home (8
states, including “not tracked”), over 7 days of daily activity.

Pozyx Dataset: In this dataset, the participant’s real-time
positioning data were collected using the Pozyx Real-Time
Localizing System1, which performs position tracking of
portable ultra-wideband radio emitter tags worn by partici-
pants using the Time Differences of Arrival (TDoA) method
with multiple fixed antennas. For each day of data collection,
the participant started the tracking system between 9-10am
and the positioning data were continuously generated for a
collection window of 11 hours at frequency of 1Hz. The
participant’s location was tracked at room-level resolution,
and we applied a low-pass filter to remove noisy space
transitions with durations less than 1 minute.

As it is synthetically generated, the HOMER data is the
least realistic dataset in our study. The GENEActiv and ADL
datasets represent real activity data, but it was manually
reported and only captures a few discrete actions. The Pozyx
data represents raw space transitions in the home, so it is the
noisiest data; however, it most closely represents the kind of
data we plan to use with our framework.

D. Experiment

For each dataset, we manually created a schedule template
to emulate the behavior patterns with our framework.

For each reference dataset to be evaluated, we com-
pared three conditions: a random baseline (10 schedules),
the cross-similarity score between the generated data (10
schedules) and reference data (7-14 schedules), and the self-
similarity score within the reference data.

1) Baseline: As a baseline for this comparison, we created
an algorithm that triggers a random user activity every
30 minutes. Although this is a naive approach, it is not
unreasonable as a first-pass design for a simulator to run in a
newly-designed environment when models of user behavior
are not available.

2) Generated schedules: For this comparison, we man-
ually created schedule templates designed to imitate the
target datasets as closely as possible. Although an automated
method for doing this would be useful, we leave that for

1https://www.pozyx.io/

future work. The goal of this evaluation is to demonstrate
the expressive power of the proposed framework, which can
be done via manual fitting.

For activities occurring around consistent times, tstart,
vstart, d, and vd were defined. For sequences of transient
activities which seemed to be more dependent on each
other than on a fixed time, only d and vd were defined.
Often, “default” states such as other or Spare time filled the
time between other activities, so these were specified with
all constraint fields empty, allowing them to fill the time
between other activities. Intermittent activities were modeled
by defining vd > d, as this would cause the duration to
sometimes go below zero, effectively deleting the activity on
some days. Finally, templates were iteratively refined until
the generated data appeared similar to the reference data.

3) Self-similarity: Whereas the baseline provided a prac-
tical lower bound for similarity measurements, we approxi-
mated an upper bound by computing a self-similarity score
for each dataset as described in Sec. V-B, representing the
degree of day-to-day variation in that dataset.

E. Results

Fig. 4 shows the results of our manual fit to each of the
four datasets. This visualization was a helpful tool during the
development of the templates, and it provides a broad sense
of the degree of similarity which was achieved.

The quantitative similarity scores are shown in Fig. 5.
In all cases, the similarity between the generated data and
reference data was much higher than the random baseline,
and comparable to the self-similarity within the reference
set itself. The best match was to the GENEActiv dataset,
with a 66.0% similarity score, slightly higher than the 65.6%
reference data self-similarity and much better than the 16.4%
similarity in the random baseline case. The match with lowest
similarity was with the HOMER dataset, although the 45.3%
similarity still beat the 43.0% self-similarity within that
dataset and was much higher than the 10.2% similarity with
the baseline case. The greatest improvement over the baseline
was observed in the ADL dataset, with 65.9% similarity
vs 11.9% in the baseline. From these results we conclude
that the expressive power of the proposed framework was
sufficient to closely approximate each of these datasets.

https://www.pozyx.io/


Fig. 5. Similarity scores for each dataset using the Levenshtein distance-
based similarity metric, where higher similarity indicates a closer approxi-
mation of the real schedule. In all cases the similarity between the generated
data and reference data was much higher than the random baseline, and
comparable to the self-similarity within the reference set itself.

Cases where the cross-similarity scores exceeded the self-
similarity scores likely indicate that the generated schedules
had lower variability than the reference schedules and were
hence closer to the “average” schedule than the original
data. This is expected, as the original schedules included
day-to-day variations of activity sequence that could not be
reproduced using our method.

Qualitatively, we visually judged the generated sequences
to closely resemble the reference data. Some anomalies in
the reference data were not reproducible, but overall patterns
appeared highly similar to the reference data in three key
ways: First, several activity sequences such as morning and
bedtime routines were successfully reproduced. Second, the
lengths of individual activities and the relative distributions
of activities through the day were roughly accurate. Finally,
activity selection appeared to happen at the correct times of
day and in the right sequence, with things like showers, meal
times, commutes, and taking medication (activities tracked in
the public datasets) occurring around the correct times.

VI. DISCUSSION

A. Fitting Templates to Data

For the most part, it was not difficult to develop schedule
templates to approximate a given input dataset. For activities
which seemed to be associated with specific times of the
day, such as waking up or eating meals, we used absolute
start times with some variance. For activity sequences, we
omitted start times and specified only duration and duration
variance. For activities which occurred on some days but not
others, we set the duration variance to be greater than the
duration, resulting in the activity occasionally having zero
duration (although this is hacky - it is not possible to model
activities of fixed duration in this way). However, despite
this flexibility, some phenomena were still difficult to model,
such as the following examples.

1) Activity pattern changes: In the ADL dataset, the user
ate lunch at home on some days, but went out for lunch
on others. As noted above, our framework can handle a

single activity occasionally being omitted, but it has no way
to model a switch like that, where the “lunch” activity is
sometimes replaced by a “leaving” activity with an earlier
start time, and the two never occur together. In such cases,
one possible solution could be to create multiple templates
for different daily patterns, and have the schedule generator
select randomly among them.

2) Stochastic vs scheduled activities: The Pozyx dataset
was the most difficult for us to fit. In part this is because
much of the activity appeared to be driven by random events,
like going to the restroom or getting a glass of water, rather
than scheduled activities that occur at a certain time or in
a certain sequence. Rather than trying to account for such
random events within a calendar schedule, we believe it
could make sense to model them as a parallel phenomenon.
The relative balance between scheduled and stochastic events
seems likely to depend the individual user’s lifestyle.

B. Limitations and Future Work

1) Similarity metrics: One limitation of using Levenshtein
distance is the fact that it is based on total number of inser-
tions or deletions. This means that this metric will have less
sensitivity to short-duration activities than to longer-running
activities, which can bias the scoring. However, we observed
that as we improved our hand-tuned schedule templates over
time, the similarity metric indeed converged towards the
self-similarity score, indicating that the directionality of the
metric was consistent with what we were evaluating, even if
there might be some bias in its absolute magnitude.

Although the Levenshtein distance metric was included to
provide a quantitative evaluation for this paper, in practice we
found the graphical plots of daily schedules to provide much
more useful feedback about the quality and nature of the fit,
both for tuning the schedule templates and for validating the
quality of the match through qualitative inspection.

2) Automating template fit: We expect that this template
fitting process could be automated, but it is not trivial to
do so, due to the insertion and removal of discrete schedule
entries, the existence of optional fields, and the asymmetric
nature of activities where the duration variance exceeds the
duration. Due to these complications, we leave automation
of this process for future work.

3) Simulating interaction between robot and human: As
the data generated by this framework are meant for robot
testing, one of the most important considerations is how
to simulate interactions between users and the robot. Our
view is that human-robot interactions need to be modeled
separately in the simulator. The proposed framework can pro-
duce realistic locations and activity contexts for a simulated
human, but any simulation of interaction with the robot needs
to explicitly account for the user’s motivation for interacting
and what behaviors they will perform - for example, will the
user only interact when the robot is in the same room, or
will they leave the room to search for the robot?

4) Multiple users: The framework was designed to im-
plicitly support multiple simulated users. By specifying
unique locations for each user’s activities, such as assigning



each user a different seat in the dining room or living
room, the users can be simulated to coexist in the same
home. However, the random variation added to their activity
schedules is applied independently, meaning that activities
cannot really be coordinated between the simulated users.
For simulating situations such as a family coming together
for a meal, this may be important to address in the future.

C. Differences between academia and industry

1) Intellectual property: We were unfortunately unable to
share the code of our simulation framework as open-source,
due to its proprietary nature. While perhaps more common
in industry, such situations can also occur in academia,
depending on funding sponsors or licensing restrictions.
Despite these constraints, we believe it is still possible to
share useful knowledge and findings.

2) Primary use cases: While academia rewards “interest-
ing” research topics, research work in industry is driven by
business goals. The framework presented here was developed
for manual design and adjustment of schedule templates for
testing. If this were a purely academic paper, it might be
more likely to focus on automated or learning-based methods
of generating schedule templates, which are interesting topics
but not necessarily driven by such practical needs. Thus,
we can probably expect research work from industry to
trend towards the pragmatic, moreso than the theoretically
interesting. This difference could be beneficial, introducing a
useful diversity of perspectives into the academic discussion.

3) Numerical performance vs practical utility: In a typical
HRI study, there would be a focus on p-values and human
subjects experiments. From an industry perspective, our main
focus is on understanding the practical utility and expressive
capability of the framework to model a variety of scenarios,
and we seek to understand its strengths and limitations rather
than focusing on numerical results.

VII. CONCLUSION

In this work we have introduced a framework for simu-
lating daily user activity at scale for testing and developing
commercial robots. The framework enables manual tuning of
daily schedules for developing both typical-use and corner-
case tests for testing and quality assurance. Our case studies
demonstrated the framework’s expressive capability, and we
also evaluated the approach’s potential to emulate example
data using both public and internally-captured datasets.

Overall, this work makes a significant contribution to the
field of social robotics by providing a systematic approach
for testing robot behaviors related to daily user activity. By
helping to avoid training data bias, our approach has the
potential to make robot behavior effective for a broad range
of user households, making it a valuable tool for future
research and development in social robotics.
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