
  

  

Abstract—Robust localization of robots and reliable tracking 

of people are both critical requirements for the deployment of 

service robots in real-world environments. In crowded public 

spaces, occlusions can impede localization using on-board 

sensors. At the same time, teams of service robots working 

together need to share the locations of people and other robots on 

the same global coordinate system in order to provide services 

efficiently.  

To solve this problem, our approach is to use an 

infrastructure of sensors embedded in the environment to 

provide an inertial reference frame and wide-area coverage. 

Based on a people-tracking system we have previously 

established which uses laser range finders to track people’s 

trajectories, we have developed a technique to localize a team of 

service robots on a shared global coordinate system. Each 

robot's odometry data is associated with the observed trajectory 

of an entity detected by the laser tracking system, and Kalman 

filters are used to correct rotational offsets between the robots' 

individual coordinate systems and the global reference frame. 

We present our data association and pose correction algorithms 

and show results demonstrating the performance of our system 

in a shopping arcade. 

I. INTRODUCTION 

ESEARCHERS around the world are developing robots to 

interact with people within real social environments, such 

as museums [1], hospitals [2], and schools [3]. Although basic 

navigational tasks like obstacle avoidance are important for 

these robots, the navigation-related research in this field tends 

to focus on psychological aspects of human-robot interaction 

such as motion strategies appropriate to social environments 

[4] and human-aware motion planning [5]. 

At the same time, other researchers are developing 

highly-accurate and robust navigation and mapping 

techniques for robots which will operate in explorational and 

military contexts. Some of these techniques are based on fixed 

references such as GPS [6] or external landmarks [7], and 

others are based on visual or RFID tagging of the robot or 

environment [8], or integration with intelligent environments 

[9]. Perhaps one of the most common navigational techniques 
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is to use on-board laser scanners, possibly combined with 

vision, for localization and mapping. 

While mapping-oriented localization techniques are 

valuable and essential for a wide range of exploratory and 

military applications, the requirements for such systems differ 

somewhat from the requirements of service robots designed 

for social interactions with people in crowded public spaces. 

Our research aim is to develop a technology framework 

enabling social robots to interact with people, provide 

services, and collaborate with other robots in real social 

spaces such as shopping malls or convention centers, like the 

example shown in Fig. 1. These services might include things 

like offering directions to customers who seem to be lost, or 

offering shop recommendations to customers who appear to 

be interested.  

 
Figure 1. Robots provide route guidance and shop recommendations to 

customers in one of our field trials at a shopping arcade. 

 

For this type of application, it is essential for the robots to 

be reliably localized in a shared coordinate system, to allow 

them to collaborate with each other and avoid collisions. In 

addition, large numbers of people passing through the space 

may crowd around the robots, which means that the robots 

must be able to navigate in crowded environments with many 

occlusions. It is also necessary for the robots to be able to 

track people in the environment robustly and continuously, for 

example, to avoid two robots successively approaching the 

same person to offer the same service. 

II. RELATED WORK 

In the robot navigation community, much attention has 
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been devoted to the problem of simultaneous localization and 

mapping (SLAM) using onboard sensors [10], [11]. This 

technique serves the dual purpose of map-building and robot 

localization. However, for robots performing services in a 

defined commercial space, the map-building functionality 

serves no useful purpose aside from its role in aiding 

localization. 

Additionally, in busy public spaces, the presence of large 

numbers of people presents a challenge for tasks such as 

map-matching, as people crowded around the robots can 

occlude the fixed references that would be used for 

map-matching. Fig. 2 shows example data from laser range 

finders located around our environment, indicating the degree 

of crowdedness that such a system will need to accommodate. 

 
Figure 2. Scan data from six laser range finders in our field trial space on a 

busy day. (Top) Raw laser scan data. (Bottom) Scan after processing and 

background removal, including locations of detected people. 

 

Regarding robot navigation in crowded spaces, Prassler et 

al. demonstrated a robotic wheelchair able to operate in 

extremely crowded environments, but their concern was with 

obstacle avoidance, not localization [12]. Robots such as 

Rhino, Minerva, and GRACE have demonstrated Markov 

localization in crowded environments, but these systems did 

not track people individually [13], [14]. 

The task of localization in conjunction with people tracking 

is an active topic of research and some techniques addressing 

the problem have been published; however, these works 

generally deal with small numbers of people. For example, 

Montemerlo et al. demonstrated such a system with up to 5 

people simultaneously [15]. A technique for differentiation 

between moving people and static elements of the 

environment was also developed by Wolf et al. [16], but 

demonstrated with only three moving people in the 

environment. Schulz et al. demonstrated a people-tracking 

technique with four people simultaneously [17]. 

Related research using road vehicles has focused on 

combining SLAM with the detection of moving objects in 

urban environments, such as [18] and [19]. 

Collaborative SLAM with multiple robots is also an active 

field of research [20], [21], however research in this field 

tends to focus on exploring optimal search techniques, for 

example, to minimize mapping time. In our case, exploration 

is not of interest, so such optimizations are unnecessary. 

Our approach uses fixed external laser range finders rather 

than the on-board sensors of the robots. A similar approach 

using external cameras is presented in Ref. [22]. 

III. NETWORK ROBOT PLATFORM 

A. Architecture Overview 

We developed a technology platform to enable us to study 

social human-robot interaction with multiple robots in a 

real-world setting. In our design, an environmental monitoring 

system using laser range finders tracks the motion of people 

through a space where several service robots are operating.  

The robots are connected via wireless networks to a 

tracking server, a planning server, and a teleoperation system, 

as shown in Fig. 3. 

 

 
Figure 3. System architecture for the network robot platform. The tracking 

server uses laser range finder data to track people and robots in the 

environment. This data is then used for path planning, service allocation, 

robot localization, and operator supervision. 

 

B. Robots 

For most of our experiments and demonstrations, we used 

four humanoid Robovie II communication robots [23]. The 

robots are semi-autonomous and perform local path planning 

tasks on their own, such as avoiding obstacles or approaching 

people. The robots receive commands from the planning 

server or from an operator via the teleoperation system, 

specifying which individuals to approach and what services to 

perform. 

Once the robot has successfully approached a person, the 

robot handles the social interaction according to its internal 

rules and behaviors, with no assistance from the planning 

server. During interactions, a remote operator assists the robot 

with speech recognition via the teleoperation system. 
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Figure 4. Operational environment for our field trials. Six laser range finders 

monitored the central area, where robots approached customers and offered 

directions and recommendations. 

 

C. Tracking Server 

The tracking server processes the laser range finder data to 

track humans and robots in the environment. This information 

is used by the planning server to assign robot services and 

perform path planning, and it is used by the teleoperation 

system to enable the operator to supervise the robots. 

Information about human positions is also used by the robots 

themselves for planning local trajectories for approaching or 

avoiding people. Finally, a localization module in the tracking 

server receives odometry data from each robot and sends back 

pose corrections based on tracking data. 

D. Planning Server 

The planning server uses characteristics of people’s 

trajectories and a statistical analysis of movement patterns to 

identify individuals to whom the robots should offer services, 

and it assigns individual robots to approach them [24]. The 

planning server also provides high-level path-planning for the 

robots, so the robots are coordinated with each other and do 

not need any overall knowledge or maps of the area. 

E. Teleoperation System 

Our system includes a teleoperation console, from which an 

operator can supervise several robots simultaneously. In our 

applications, the operator’s primary roles are to support 

speech recognition in noisy environments and to generally 

supervise the robots for safety. For many of our 

demonstrations and experiments, the operator has also 

corrected failures in robot localization [25]; however, the 

localization system presented here features global error 

recovery in the case of tracking failures, enabling the operator 

to focus completely on conversation-related tasks. 

F. Operating Environment 

We installed our system in an open space roughly 20 m long 

by 5 m wide in Universal CityWalk Osaka, a shopping arcade 

in front of the Universal Studios Japan theme park. Within this 

space we simultaneously operated four humanoid robots for a 

number of demonstrations and experiments. During the 

demonstrations, it was common for more than 30 people to be 

present in the space, often crowding around the robots to 

interact with them. 

Six laser range finders were installed in the space for human 

and robot tracking (see Fig. 4). These were arranged around 

the perimeter of the space to minimize occlusions. The data 

from these sensors was recorded on a data-acquisition PC and 

streamed over the network to the tracking server.  

IV. LOCALIZATION SYSTEM 

A. Tracking with Laser Range Finders 

In this environment, we used a network of six SICK 

LMS-200 laser range finders, positioned around the perimeter 

of the area. They were set to a detection range of 80 m with 

precision of 1cm, each scanning an angular area of 180° at a 

resolution of 0.5°, providing readings of 361 data points every 

26 ms. 

The laser range finders were mounted 85 cm from the 

ground, a height chosen so the sensors could see above clutter 

and obstacles such as benches and luggage. Another reason 

for this placement was that at long range, the scan beams are 

spaced quite far apart (over 8 cm apart at a range of 10 m) and 

detection of small features like legs is difficult. Detection of 

larger targets, like a torso, is more robust at these distances. 

The algorithm we used for detecting and tracking humans is 

described in [26], but we will summarize the relevant parts of 

the algorithm here. 

1) Detecting Entities 

To identify new entities (humans or robots), the raw scan 

data is segmented at every time step, to extract continuous 

segments of foreground data roughly corresponding to 

expected entity widths (in our case, robots and humans are 

roughly the same width). Clusters of these patterns are 

grouped together and flagged as candidate entities. 

Candidates coinciding with entities already being tracked are 

removed from the list, and those remaining are propagated to 

the next time step, where they are merged with the candidates 

detected during that step. 

If a candidate entity survives beyond a threshold number of 

time steps, it is considered to be a valid detection, and a new 

particle filter is assigned to that location, initialized with the 

position and velocity of the candidate entity it replaces. At this 

point, no distinction is yet made between humans and robots, 

and all entities are initially assumed to be humans. 

2) Tracking Entities 

In our algorithm, each new entity is assigned a unique ID 

and tracked by an individual particle filter. By doing so, we 

allow feature-object associations to be handled implicitly by 

the particle filters, which follow the detected features over 

time, rather than requiring re-association between 

observations and previously observed entities at every time 

step. This approach generally produces reliable results, 
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although entities are sometimes lost briefly and redetected 

with a new ID. 

By contrast, the associations between robots and detected 

entities are explicitly handled at each time step, because 

reliable localization is critical to the system’s performance 

and justifies the additional computational overhead. 

3) Removing Entities 

The removal process is much simpler than the addition 

process. When the particles within a filter spread out beyond a 

defined dispersion threshold, or when their average likelihood 

value goes below a threshold probability, that particle filter is 

assumed to no longer be tracking anything, and it is removed. 

B. Particle Filter Design 

We assume that the reader is familiar with particle filters, a 

common sample-based technique often used for Bayesian 

state estimation in robotics. For a basic explanation of particle 

filtering and related techniques, see Ref. [27].  

In our implementation, particle filters were used to estimate 

four state variables (x,y,v,ð) for each entity being tracked. In 

the resampling step of the filter, we used the Sampling 

Importance Resampling method. To minimize the number of 

particles, we used the KLD-sampling technique [28]. 

The key elements which define the behavior of a particle 

filter are the motion model used for propagating the particles 

and the likelihood model used for assigning weights to them. 

1) Motion Model 

As has been observed in [29], the modeling of human 

motion presents difficulty because it is neither Brownian in 

nature, nor can it be modeled as a smooth linear function, 

since people may stop or change direction abruptly. Thus, as a 

compromise between the two, a Gaussian noise component is 

added to each particle’s v andð values to capture the 

randomness of human motion. 

2) Likelihood Model 

Laser scan data provides two qualitatively distinct types of 

information useful for estimating human positions: occupancy 

information, indicating whether a certain point is occupied or 

empty, and edge information, indicating a contour which may 

correspond with the edge of a detected object. Fig. 5 illustrates 

the distinction between these two kinds of information. 

To determine likelihood values from the raw sensor data, 

our system uses an adaptive background model, updated over 

time to determine the best estimate of the true background 

distance. Occupancy likelihood is determined by dividing the 

world into “open”, “shadow”, and “unobservable” regions. 

The “unobservable” region is beyond the background model 

for that sensor, and thus contributes no information. The 

“open” region has been observed by the sensor to be 

unoccupied, and the remaining space is considered “shadow”. 

Note also that every “shadow” region lies behind an “edge”.  

For Bayesian state estimation, it is necessary to model the 

conditional probability ( )][| m

tt xzp  for observation tz  and 

state hypothesis 
][m

tx  for particle m at time t. 

 
Figure 5: A typical single-sensor laser scan. (Left) The positions of humans 

relative to the scanner. (Center) Occupancy information. (Right) Edge 

information. 

 

Our likelihood model for this calculation is expressed in 

Eq. 1 and 2 and includes components reflecting both 

occupancy and edge information. 
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For a point in a shadow region (strictly speaking, we 

consider only those regions wide enough to contain a human), 

the likelihood in Eq. 2 is calculated as the sum of a constant 

value shadowp  and a likelihood ( )][| m

ttedge xzp , calculated 

as a normal distribution centered upon a point located one 

approximate human radius behind the observed edge. In our 

calculations a value of 25cm was used for humans, and a 

robot-specific radius was used for each robot. 

This model reflects the fact that people are highly likely to 

be found just behind an edge, yet can plausibly exist anywhere 

in a shadow region (e.g. the occluded person in Fig. 5). For a 

point in an open region or a shadow region too narrow to 

contain a human, the likelihood is theoretically zero, but for 

robustness to noise we set it to a small but nonzero constant 

value openp . In this case, edge information is irrelevant. 

Finally, in Eq. 1, these likelihood values are averaged 

across all sensorsn sensors for which the proposed point lies 

within the sensor’s ”open” or ”shadow” range, i.e. not 

”unobservable” to that sensor. To prevent two particle filters 

from tracking the same entity, a value ncollocatiop is subtracted 

from this result, calculated as a sum of normal distributions 

surrounding each of the other entities, based on the list of 

human positions from the previous time step. 

C. Association Algorithm 

As mentioned above, a separate algorithm is used to 

maintain the correspondence between robot positions and 

detected entities.  

The tracking server internally maintains a tracking model 

for the position, velocity, and angular velocity of each 

connected robot. When each robot reports its estimated wheel 

velocities, the tracking server updates the linear and angular 

velocities for that robot’s tracking model. 

In parallel with these updates, after each iteration of the 

particle filters in the tracking system, the associations between 

all robots and detected entities are updated according to the 
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following algorithm: 

1) Project robot pose 

For each robot tracking model rt, calculate a kinematic 

projection of the robot’s pose based on angular velocity, linear 

velocity, and the elapsed time since last update. 

2) Remove invalid associations 

Our tracking system is quite stable, so it is uncommon for 

associations to be changed while the robots are in operation. 

However, two kinds of errors can happen. Local tracking 

errors occur when there is an error in the laser-tracking 

system, such as when the particle filter tracking the robot 

disappears briefly. Global tracking errors occur when the 

robot is mistakenly associated with the wrong entity entirely, 

in the wrong part of the environment. 

To handle these errors, we first remove the association 

between rt and its associated entity if any of the following 

conditions are true: 

 (a) the associated entity no longer exists 

 (b) rt is too far from the entity 

 (c) velocity of rt is too different from velocity of entity 

 (d) another robot is associated to this entity 

3) Identify possible new associations 

Next, in order to generate a new association for the robot, 

we need to create a list of entities which are potential matches. 

By comparing the robot’s current velocity and motion history 

with those of each entity being tracked, we are able to identify 

which entities are unlikely to be tracking the robot. 

For this step, the system keeps a history of absolute distance 

traveled for each robot (according to odometry) and each 

entity tracked in the environment. The history is updated once 

per second. By iterating over this history and calculating the 

root-mean-square (RMS) error between the motion history of 

a robot and each tracked entity, we can identify which entities 

are not likely to be tracking the robot’s motion. 

Fig. 6 shows an example of this motion history taken from 

our field trial, and Fig. 7 shows the RMS difference between 

the motion history of each entity and the odometry-based 

motion history of the robot for the same dataset. 

Note that this information is not guaranteed to uniquely 

identify a best match. For example, when robots and people 

are stopped for extended periods of time, it is not possible to 

distinguish between them using motion history alone. 

This technique is useful, however, in filtering out entities 

which are not possible matches for the robot. By removing 

those entities from the list of all entities being tracked, we 

generate a short list of potential matches for each robot. This 

list is updated only once per second, and thus does not incur a 

significant computational overhead. 

In addition to this filtering, the difference between the 

robot’s current speed and the current speed of each remaining 

entity is calculated, and in cases where the difference between 

the speeds exceeds a threshold (we used 350 mm/s), we 

remove that entity from the list of potential matches as well. 
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Figure 6: Motion history. Total distance traveled per second over a period of 

15 seconds. Solid lines show the motion histories for nine entities detected by 

the laser tracking system. The dashed line shows the robot’s reported 

odometry data, and the solid black line indicates the motion history for the 

entity corresponding to that robot.  

 

 
Figure 7: RMS difference between distance traveled by tracked entities and 

distance reported by robot’s odometry, taken over a 15-second history 

window. 

 

4) Associate robots to entities 

There are two methods we use for re-associating robots to 

tracked entities, corresponding to the two kinds of tracking 

errors which can occur. 

To correct local tracking errors, we use a local association 

algorithm. From the set of all plausible matches, we consider 

only those entities which are within a threshold distance from 

the robot’s current estimated position (we used a distance of 1 

m). We then associate the robot with the entity closest to its 

projected position, if any candidates remain. 

If a robot is not associated with a plausible match within 

five seconds, we apply a global association algorithm. In this 

case, we evaluate an extended motion history vector, covering 

up to 300 s. The RMS error between each plausible entity and 

the robot is calculated over this vector, giving a more accurate 

estimation of the best match for that robot, and allowing more 

entities to be ruled out. 

For further disambiguation, this list is prioritized by 

similarity of the entity’s current speed to the current speed of 

the robot. Thus, for global association, distance from the 

robot’s estimated position is not considered, allowing the 
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robot to be re-associated anywhere within the environment. 

Finally, we must consider the case when two robots are 

mapped to the same entity. When this happens, the robot with 

the closest velocity to the tracked entity is given priority, and 

the other robot is re-associated to its next best global match.  

5) Apply position corrections 

For each robot which has been successfully associated to a 

tracked entity, we use the position data from the laser tracking 

system to correct the robot’s estimated position. 

If the robot is moving, we set the position of rt to the latest 

observed position of its associated entity. 

If the robot is stopped, we add the latest observed position 

to a window filter. This enables the positions to be averaged 

over time, resulting in a more stable position estimate for 

stationary robots. 

6) Update output data 

Finally, we incorporate the resultant robot positions into the 

output list of human and robot positions which is sent to the 

planning server. Position corrections are also sent to the 

localization module, where they are used in the angle 

correction calculations and then sent to the robots. 

D. Theta Correction 

Simple lateral position errors will converge over time, as 

the corrected position estimates sent to the robots approach 

their actual positions. However, angular errors can increase 

over time with odometry drift, and even small angular errors 

in the robot’s orientation will lead to systemic position errors. 

If the angular errors are large enough, this can lead to an 

increased incidence of false disassociations and instability of 

the tracking system. Thus a mechanism is required to correct 

orientation errors. 

Since the position estimate is already calculated for us by 

the tracking server, the only remaining variable requiring 

correction is the robot’s orientation angle θ . We employed a 

one-dimensional Kalman filter for this calculation. 

Kalman filtering is another common state-estimation 

technique, in which both an estimate of the state of a system 

and a measure of the accuracy of that estimate are calculated 

recursively at every time step. There are several forms of the 

equations for the Kalman filter, and Equations 3-5 show the 

form which most clearly illustrates our approach. 

Our aim is to recursively approximate the actual angle kθ  

at time step k with an estimate kθ̂ , given angle observation 

kz  with measurement variance
2

kzσ  and previous angle 

estimate 
−

kθ . The variance 
2

−
kθ

σ  of the angle estimate is 

updated at each step, and it is assumed that this increases over 

time due to a process noise with variance 
2

processσ . The term 

kK in Eq. 3 represents the Kalman gain, which is used in 

calculating the new angle estimate (Eq. 4) and its variance 

(Eq. 5). As each new observation is recorded, these three 

equations are evaluated recursively, using the previous step’s 

state estimate and variance. 
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The state being estimated in this case is the robot’s 

orientation angle. The tracking system is unable to observe the 

robot’s angle explicitly, so we are forced to rely on 

observations of the robot’s direction of motion to measure the 

robot’s angle, as illustrated in Fig. 8. 

 
Figure 8. Dynamic model showing estimated pose, observed pose, and 

covariance of measurement error. 

 

The Kalman filter alternates between two phases: a 

prediction phase and an update phase.  

Prediction: Beginning with the robot’s previous position 

(which has already been corrected to coincide with the 

observed position from the previous time step), we predict the 

robot’s new position based on odometry. We assume that this 

motion is corrupted with a small process noise 
2

processσ  at 

each step (we used an arbitrary small value of 0.0001 radian). 

Update: The position data from the laser tracking system is 

used to provide an observed value for the robot’s angle. The 

position observation is noisy, with a measurement uncertainty 
2

positionσ . Using a small-angle approximation, we can say that 

for displacement dS, the variance of the angle error 

dS

position

zk

2

2
σ

σ ≈ .  

What this means is that the angle estimate from the tracking 

system becomes more reliable (lower variance) when the 

robot has traveled further (higher dS), which makes intuitive 

sense.  

Each time a new position estimate is available from the 

laser tracking system, these two steps are repeated and the 

difference between the angle estimate kθ̂ and the robot’s 

perceived angle is calculated and sent to the robot. 
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E. Network Latency 

Because this system operates over a wireless network, data 

loss and delay due to interference and signal loss is a common 

problem. In particular, delayed data can cause old position 

corrections to be applied to a robot after it has been updated to 

a new position. This can result in the robot’s perceived 

position jumping between the new and old position, as old and 

new data cycles between the robot and the localization server. 

To eliminate this problem, whenever the robot’s position is 

set to a new location (as opposed to an incremental position 

correction) a “reset” signal is sent from the robot through the 

localization system, and back to the robot. Until the signal 

returns, the robot does not respond to any position corrections. 

V. PERFORMANCE EVALUATION 

A. Theta Correction 

To demonstrate the effectiveness of the theta correction 

system, we ran two robots simultaneously for 7 minutes in the 

field trial environment, recording tracking and odometry data. 

We then replayed the data through the localization system 

twice, once with theta correction on and once with it off, to 

observe the angular error which would have occurred without 

theta correction. Fig. 9 shows results from this comparison. 
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Figure 9: Angular error over time with and without theta correction. This 

graph shows the average difference between a robot’s perceived orientation 

angle and its motion direction, evaluated every 30 seconds for 7 minutes. 

 

In this trial, the robots patrolled paths of 2-3 m in length, 

stopping to interact with people only when the customers 

actively approached the robots. To avoid any periodic effects 

of the repetitive patrol path, each robot was also commanded 

once to drive to a point further than 5 m away before returning 

to its patrol path autonomously. The robots each traveled 

approximately 55 m and turned through an absolute angular 

displacement of at least 8 rotations. During this trial an 

average of 6.7 people were tracked in the environment at any 

given time, with a maximum of 14 tracked simultaneously. 

Two kinds of errors are visible in the uncorrected robot 

angle estimates in Fig. 9. The angle estimate for Robot 1 was 

quite close to its actual orientation for several minutes, but 

eventually drifted away, most likely due to wheel slip during 

the turns in its patrol path. Robot 2 does not appear to have 

had significant drift due to wheel slip, but its initial angle is 

around 90 degrees off from its actual direction of motion, and 

this error remains uncorrected for the duration of the trial. 

B. Tracking Performance 

Stability in tracking is also a key requirement of this system. 

To evaluate tracking performance, we ran four robots 

simultaneously in the field trial environment on a moderately 

crowded day for 30 minutes (roughly the amount of time we 

can continuously run the robots before changing the batteries) 

and recorded the tracking data for that period. We analyzed 

the data and manually identified localization errors. 

Fig. 10 shows the results of this analysis and the number of 

people being tracked during that period. There were four 

instances of localization errors during this time, during each of 

which only one robot was not correctly localized. Each error 

was automatically corrected after a short time. Note that since 

four robots were operating simultaneously, the system 

correctly tracked the robots more than 98% of the time. 
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Figure 10. Timing and duration of localization errors for a 30-minute trial 

with four robots. Localization errors are shown on the top, and the number of 

people being tracked (excluding the four robots) is shown below. Each error 

marked represents a tracking error for only one of the four robots. 

 

For the first two errors, the entity tracking Robot 2 

disappeared during extended periods of occlusion. Both 

times, Robot 2 was interacting with customers when it 

happened, and the system erroneously re-associated the robot 

with an entity tracking one of the customers. Since the robot 

and customers did not move during the interaction, the 

association algorithm was unable to correct the error until the 

interaction had finished and the customers had walked away. 

For the third error, in which Robot 3 was briefly 

disassociated, the robot had been patrolling in the lower left 

area of the map, which has poor sensor coverage. Since the 

tracking system is less accurate in that area, the tracked 

entity’s estimated velocity was incorrect, and the robot was 

disassociated due to the speed difference. The system 

recovered from this error quickly, within half a second. 

The fourth error was much like the first two, in that the error 

occurred while the robot was interacting with a customer. The 

robot and the customer moved away at roughly the same speed 

for several seconds, but the system recovered when the 

customer began walking much faster than the robot. 
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VI. DISCUSSION 

 Concerning robustness, we have observed the system to 

perform best when the robots are driving in different motion 

patterns. When the robots are all stopped for extended periods 

of time, the system cannot distinguish between them. This 

ambiguity usually occurs at system startup, and associations 

are corrected once the robots begin moving.  

Also, the system assumes that every robot connected to the 

system is physically within the tracking area. When this 

assumption is violated (e.g., a robot goes offline or drives 

outside of the tracking area) the association algorithm tends to 

make more errors. We intend to address this issue in future 

versions of the system. 

VII.  CONCLUSIONS 

We have presented a novel localization system for teams of 

social robots using a network of laser range finders embedded 

in the environment. We have demonstrated here that the 

system can perform both localization and theta correction for 

the robots reliably, even with large numbers of people in the 

environment, a task which has not yet been demonstrated for 

multi-robot teams. In the future we plan to continue improving 

the robustness and reliability of the system. 
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