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Abstract

Robots designed to interact socially with people require reliable estimates of human position
and motion. Additional pose data such as body orientation may enable a robot to interact more
effectively by providing a basis for inferring contextual social information such as people’s inten-
tions and relationships. To this end, we have developed a system for simultaneously tracking the
position and body orientation of many people, using a network of laser range finders mounted
at torso height. An individual particle filter is used to track the position and velocity of each
human, and a parametric shape model representing the person’s cross-sectional contour is fit to
the observed data at each step. We demonstrate the system’s tracking accuracy quantitatively
in laboratory trials, and we present results from a field experiment observing subjects walking
through the lobby of a building. The results show that our method can closely track torso and
arm movements even with noisy and incomplete sensor data, and we present examples of social
information observable from this orientation and positioning information that may be useful for
social robots.

keywords: people tracking, particle filtering, motion analysis, human-robot interaction, laser-based
tracking

1 INTRODUCTION

A new class of service robots is emerging, one in which social interaction is a fundamental aspect
of a robot’s performance. Experimental field trials have demonstrated the possibility of robots act-
ing as museum guides [1], receptionists [2], classroom assistants [3], guides in shopping centers, and
other social roles in everyday life. As the natural-language and gestural communication capabilities
of these robots improve, people’s expectations of the robots’ interaction skills will commensurately in-
crease, and these robots will need to be responsive not only to speech, but to subtle cues of nonverbal
communication as well.

Movement and positioning, for example, contain implicit information about a person’s intentions,
social relationships, mood, and status. A person’s walking speed, trajectory, proximity to other people,
and facing direction all provide information which can contribute to an understanding of social context.

Such knowledge could be used by service and communication robots to identify people who have
lost their way or are in need of help, to stay out of the way of people in a hurry, to identify group
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leaders for guidance or sales applications, to understand when the robot is the center of attention and
when it is being ignored, to identify booths in an exhibition or exhibits in a museum that a person has
missed, and for many other purposes.

Although a robot’s on-board sensors can be used for some of these tasks, ubiquitous sensor networks
can monitor larger areas and are subject to fewer size, power, and bandwidth restrictions. In many of
our experiments and field trials, laser range finders are used for tracking people’s positions as they are
easier to install and less obtrusive than floor sensors, require far less processing than video tracking
systems, and have a much higher precision and faster response time than RFID tracking or GPS.

To use these resources effectively, one goal of our research is to extract as much information as
possible from this laser scan data. If nuances of a person’s movement, such as the direction in which
they are facing, can be extracted from the same laser scan data already used to determine their location,
then information which is potentially useful for understanding social context will have been gained at
no additional hardware cost.

In this paper we present an algorithm we have developed for tracking people using a parametric
shape model which includes arm positions and facing direction in addition to basic position tracking.
The algorithms used in this system are described, and quantitative results of a laboratory experiment
to characterize the system’s tracking accuracy are presented. A second experiment was conducted in
the entrance lobby of an office building, to demonstrate the system’s performance with multiple sub-
jects in natural walking situations. Qualitative results from that experiment are presented, illustrating
the system’s effectiveness in tracking many people simultaneously and suggesting types of social infor-
mation that can be observed in the tracking results. Finally, considerations concerning performance
tuning and real-time operation of the system are discussed.

2 RELATED WORK

Human tracking itself is not a new field, and many aspects of the problem have already been explored
extensively. Like many of its predecessors, our system tracks people by using particle filters to estimate
their position and velocity. Particle filters are a well-known tool in the robotics community and have
often been used in conjunction with laser scan data for the purposes of robot localization and mapping
[4, 5] as well as human tracking. A general overview of applications of particle filters in robotics can
be found in [6].

Much of the human-tracking research to date has been based on leg tracking, for both mobile
robotics [7, 8] and environmental monitoring [9, 10, 11]. This has historically been motivated in part
by the fact that many robots use laser sensors for obstacle avoidance, and for that reason already
have laser sensors mounted near the ground. However, their visibility is often limited by those same
obstacles, making floor-level sensors a good choice for on-board robot systems but less so for wide-area
environment monitoring in cluttered spaces.

In our work, the laser sensors constitute an essential part of a ubiquitous sensor network used
exclusively for human tracking in real environments. For this reason, it is important for the sensors to
be mounted higher, above furniture and ground clutter. Thus the sensors in our system are mounted
at a height of 85-90 cm, where the arms and torso can be clearly observed.

Although less common than leg-tracking, torso-level tracking is not without precedent in research.
For example, Fod et al. created a system using a Kalman filter to track people’s trajectories with
waist-height laser scanners [12], and Almeida et al. developed a real-time torso-level laser-based human
tracking system utilizing particle filters in [13]. These systems, however, were focused specifically on
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position tracking, whereas our work is concerned with observing body orientation and pose in addition
to position.

3 POSITION TRACKING

Our algorithm was developed to track both human position and orientation. The strategy of this
algorithm is to first estimate each person’s position using a particle filter, and then to fit a shape
model, representing the person’s body orientation and arm positions, to the observed contour data.

Our initial approach to this problem had been to calculate both position and orientation using the
particle filter. This resulted in an unacceptably slow system for our real-time applications. However,
we observed that a majority of the computation time for each particle was being spent on orientation
calculations.

In fact, the edge-based calculations used for orientation are not particularly well-suited for use in
a particle filter. For position, calculations are efficient because their likelihood distributions are stable
over time (regions are clearly defined and change slowly), relatively smooth in space, and easy to
calculate from raw sensor data. Edge-based likelihood distributions are more complex to calculate, not
stable over time (the number and placement of detected points can change rapidly between frames with
a great deal of randomness), nor are they smooth in space, as the best-fit orientation can change wildly
over even small variations of the assumed center position. It is thus difficult to obtain a meaningful
average orientation value over a scattered set of particles.

In our technique, the orientation calculations are highly dependent upon position, but the position
calculations do not depend on orientation. Thus the orientation calculations can be removed from the
particle filter and performed after the position estimate is evaluated. Having done so, at each time
step we need only calculate orientation once for each particle filter, rather than once for each particle.
In addition, by removing variables from the particle filter we are able to reduce its dimensionality,
consequently reducing the number of particles necessary for accurate tracking. By separating the
calculations into a two-step process, we are thus able to dramatically increase real-time performance.
More details on this topic can be found in Sec. 7.2.

3.1 Detection and Association

A common problem in tracking is the association between detected features and objects being tracked.
In our algorithm, each person is tracked by a single particle filter. Doing so enables these feature-
object associations to be handled implicitly by the particle filters, which follow the detected features
over time. Thus explicit feature-object associations only need to be made when creating new particle
filters for previously untracked humans.

To identify new humans, the raw data is segmented at every time step, to extract continuous
segments of foreground data roughly corresponding to expected human widths. Clusters of these
patterns are grouped together and flagged as human candidates. Candidates coinciding with humans
already being tracked are removed from the list, and those remaining are propagated to the next time
step, where they are merged with the candidates detected during that step. If a human candidate
survives beyond a threshold number of time steps, it is considered to be a valid detection, and a
new particle filter is assigned to that location, initialized with the position and velocity of the human
candidate it replaces.

The removal process is much simpler than the addition process. When the particles within a filter
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spread out beyond a defined dispersion threshold, or when their average likelihood value goes below a
defined probability threshold, that particle filter is assumed to no longer be tracking a human, and it
is removed.

3.2 Particle Filtering

A key component of our tracking algorithm is the particle filter, the basic principles of which will be
very briefly explained here. For a more in-depth explanation, [14] provides a thorough treatment of
particle filters and many other state estimation techniques.

Particle filtering is a method of estimating the state xt of a system by using a cloud of “particles”,
each of which represents a hypothesis about that state. The following four-step procedure is performed
at each iteration of a particle filter.

1. Update The state of each particle is updated by applying an internal motion model, reflecting
the dynamics of the system, to the previous state estimate. The motion model used in our work
is described in Section 3.4.

2. Assign Weights Particles are assigned weights representing their relative likelihoods according
to a likelihood model. The likelihood model provides an approximation of the conditional prob-

ability p(zt|x[m]
t ) for particle m, (m = 1..M) and measurement vector zt taken at time step t of

the particle filter. Our likelihood model is described in Section 3.5.

3. Estimate State An estimate of the state is then calculated, generally as a weighted average of
the states of the particles.

4. Resample Particles are removed or propagated based on their weights to produce a new set
of particles which more accurately reflects the true state of the system. Several resampling
techniques exist; our system uses the sampling importance resampling technique [15].

In this way, the cloud of particles converges on the most likely state and follows it over time.

3.3 State Model

The state vector tracked by the particle filter consists of four variables: x, y, v, and θ. The variables
x and y represent the position of the human being tracked. Although the speed v, and direction θ
of motion could be calculated a posteriori from the position data, these variables are included in the
state and updated at every step to enable the person’s position to be projected forward through time
for more accurate tracking. These variables are used in the motion model, described below.

3.4 Motion Model

At every update of the particle filter, each particle is propagated according to a motion model. The
purpose of this motion model is to approximate the probability of a state xt based on the previous
state xt−1.

As has been observed in [16], the modeling of human motion presents difficulty because it is neither
Brownian in nature, nor can it be modeled as a smooth linear function, since people may stop or change
direction abruptly. Thus, as a compromise between the two, a Gaussian noise component is added to
each particle’s v and θ values to capture the randomness of human motion. We then propagate the
(x, y) motion linearly according to the resultant v and θ values of the particle.
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3.5 Likelihood Model

The purpose of the likelihood model is to approximate the value of p(zt|x[m]
t ). In this case, the

measurement vector z is an array of raw sensor range measurements. An effective likelihood model
must provide a robust likelihood estimate in spite of noisy sensor data, partial and full occlusions, and
the irregular and varying shapes of human bodies.

Laser scan data provides two qualitatively distinct types of information useful for estimating human
positions: occupancy information, indicating whether a certain point is occupied or empty, and edge
information, indicating a contour which may correspond with the edge of a detected object. Fig. 1
illustrates the distinction between these two kinds of information.

Figure 1: A typical single-sensor laser scan. (Left) The positions of humans relative to the scanner
can be seen. (Center) Occupancy information. (Right) Edge information.

To determine likelihood values from the raw sensor data, it is first necessary to create a background
model. Our system uses an adaptive background model which is updated over time to determine the
best estimate of the true background distance. Occupancy likelihood is then determined by dividing
the world into three regions: ”open”, ”shadow”, and ”unobservable”. The ”unobservable” region is
beyond the background model for that sensor, and thus can contribute no information. The ”open”
region has been observed by the sensor to be unoccupied, and the remaining space is considered
”shadow”. Note also that every ”shadow” region lies behind an ”edge”.

The likelihood model used to compute p(zt|x[m]
t ) is expressed in Eq. 1 and 2 and includes compo-

nents reflecting both occupancy and edge information.

p(zt|x[m]
t ) =

1

nsensors

nsensors∑
i=1

pi(zt|x[m]
t )− pcollocation (1)

pi(zt|x[m]
t ) =

{
pshadow + pedge(zt|x[m]

t ) in a shadow region

popen in an open region
(2)

For a point in a shadow region (strictly speaking, we consider only those regions wide enough
to contain a human), the likelihood in Eq. 2 is calculated as the sum of a constant value pshadow
and a likelihood pedge(zt|x[m]

t ), calculated as a normal distribution centered upon a point located one
approximate human radius behind the observed edge. (In our calculations a value of 25cm was used.)
This reflects the fact that people are highly likely to be found just behind an observed edge, yet can
plausibly exist anywhere in a shadow region (e.g. the occluded person in Fig. 1).

For a point in an open region (or in a shadow region too narrow to contain a human), the likelihood
is theoretically zero, but for reasons described below is set to a small but nonzero constant value popen.
In this case, edge information is irrelevant.

Finally, in Eq. 1, these likelihood values are averaged across all nsensors sensors for which the
proposed point lies within the sensor’s ”open” or ”shadow” range, i.e. not ”unobservable” to that
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sensor. To prevent two particle filters from tracking the same human, a value pcollocation is subtracted
from this result. Its value is calculated as a sum of normal distributions surrounding each of the other
humans, based on the list of human positions from the previous time step.

3.5.1 Error Tolerance

In an ideal system, the ”open” regions could be assigned a likelihood value of zero. However, in real
systems there are many possible sources of error, such as calibration errors (the exact position and
angle of each sensor may not be properly calibrated, leading to imperfect alignment of shadow regions),
measurement errors (some textures of clothing cause noisy sensor readings and thus apparent gaps in
people’s bodies), timing synchronization errors (sensor data feeds are sent in real-time over a network
and may arrive asynchronously, causing old data to be mixed with new), and hardware or transmission
errors (which produce occasional bursts of sensor noise). The binary discretization of space into ”open”
and ”shadow” regions is thus a slightly imperfect representation of reality. Consequently, we set the
likelihood of ”open” regions to a small but nonzero value popen. This adds a small amount of resilience
to the system, allowing particles to survive outside of the shadow regions for a short time in order
to provide smoother performance with respect to such sources of error. This does not destabilize the
particle filter since the likelihoods of these particles are substantially lower, and particles lying outside
of the shadow regions for too long will naturally be culled in the resampling process.

4 ORIENTATION ESTIMATION

Our algorithm for calculating a person’s orientation uses a parametric shape model, which we describe
in Section 4.1. An angular array representation, presented in in Section 4.2, is used to store laser
scanner data as a set of edge distances. As a tool for our calculations, an empirical distribution of
expected distances for such an array, relative to the person’s forward-facing direction, was generated
based on laboratory motion-capture data. We describe the derivation of this distribution in Section
4.3.

The computation itself consists of first determining a rough estimate of body orientation, described
in Section 4.4, based on the observed contour shape and the empirical distance distribution mentioned
above. The second step, explained in Section 4.5, is to determine the individual arm angles, based
on this rough estimate. The arm angles are then used to generate a refined estimate of orientation.
Finally, Section 4.6, presents a technique for reducing accidental 180-degree reversals by considering
motion direction and velocity.

4.1 Theoretical Shape Model

Large variations in cross-sectional contour shape were observed between subjects. This is due in part
to individual differences in body shape, and also to differences in height. For example, arm motion is
more pronounced for taller subjects, and their arms sometimes disappear if their hands briefly swing
out of the scan plane.

Clothing also affects contour shape. For example, a loose shirt or a heavy coat can make a person’s
torso appear unusually large or asymmetrical, as can a backpack or purse.

Taking these factors into consideration, the amount of variation between subjects makes it diffi-
cult to develop a precise, yet generalizable, model. Thus a simple three-circle model was used for
determining body orientation.
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Figure 2: Our three-circle model, with the six variable parameters indicated.

Table 1: Model Parameters

Parameter Description

θ Average direction of body orientation
ϕ Arm separation angle

ϕL = θ + ϕ for left arm
ϕR = θ − ϕ for right arm

dL Distance of left arm from body
dR Distance of right arm from body
rarm Arm radius
rtorso Torso radius

Our model is illustrated in Figure 2. A central, large circle represents the person’s torso, and two
smaller circles represent the arms. This model has six parameters which can be varied to best match
a subject’s cross-sectional body contour.

The parameters describing the state of this model are summarized in Table 1. The two parameters
of primary interest to us are θ and ϕ. The other parameters are held constant for this application,
although they can be estimated from the data if necessary.

We have designated θ to represent the angle midway between the two arms. When a subject is
standing still, this coincides with the direction of torso orientation. While the subject is walking, the
swinging of the arms and torso cause θ to oscillate around the direction of motion.

The parameter ϕ represents the angle of separation between each arm and the center angle des-
ignated by θ. This tends not to vary far from 90 degrees, as the arms swing in alternate directions
during walking.

4.2 Radial Data Representation

For these calculations, we need a way to represent 2D edge data in a consistent way for analysis. To
achieve this, the information contained in these points is mapped to an angular array of distances.
Distance values from the body center to the detected edge points are stored in an array of bins which
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Figure 3: Examples of populated radial arrays. Left: Radial array reflecting an ideal human shape
model. Right: Radial array populated with observed sensor data.

represent an angular discretization of the space surrounding the estimated human position. For each
angular division, the distance to the furthest observed data point within 50 cm of the estimated human
position is stored in that bin. Fig. 3 illustrates such array representations of both the ideal shape
model and a set of actual shape data. A linear representation of such an array is shown in Fig. 5a.

4.3 Empirical Distance Distribution Model

A predictive distribution of radial distances is also needed for these calculations. An empirically-
derived predictive distribution function representing average expected distance values as a function of
angular deviation from θ was constructed from the laser scan and motion capture data gathered in the
laboratory trials described in Sec. 5. This distribution function is shown in Fig. 4(a).

Two minutes of laser scan and motion capture data were recorded for each of five subjects. Each
subject’s angle at each time step was computed using the motion capture system, and a radial accu-
mulator with 100 divisions (3.6 degrees each) was populated with the laser scan data for that time
step, oriented relative to that angle. This distance data was collected over approximately 4500 time
steps and averaged to determine an expected distance distribution function for each subject. These
distribution functions are shown in Fig. 4(b).

Next, the data distributions were averaged between subjects. The resultant function was still some-
what noisy and asymmetrical. Making the assumption that this distribution should be symmetrical
(and if there is a physiological reason for the asymmetry, to eliminate any bias based on handedness)
the mirror images of the subjects’ data distributions were also included in the average. Fig. 4(a)
shows the standard deviation error bars for this combined distribution. The resultant distribution was
then smoothed using a sliding 3-point window to reduce remaining noise. Finally, a constant offset
was subtracted from the filter and it was normalized, steps which do not alter its effectiveness as a
convolution filter.

4.4 First-Pass Theta Determination

The strategy for the first approximation of theta involves two radial arrays. The first is populated
with actual observed distance of data points from the body center, with the angular divisions corre-
sponding to absolute angles. The second array holds the expected distribution of distances derived in
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(a) Predictive arm distribution filter
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(b) Raw data used to derive filter

Figure 4: Predictive arm distribution filter showing standard deviation error, and raw data used to
derive the filter

Section 4.3, where the angular divisions represent angles relative to θ, the person’s forward direction.
By convolving these arrays with each other, we can compute a goodness-of-fit function between the
predicted distribution and the observed distribution, as a function of θ. The maximum point of that
function is the point where the observed data best fits with the expectation model, and is thus a good
first-pass estimate for θ.

To begin, we need to construct an approximate model of the actual shape profile, beginning with
the radial array shown in Fig. 5a. There will nearly always be angular divisions in the radial array
with no points in them. Since we have no knowledge of the actual distances of these points, we set
those bins to the average value across all occupied bins, to produce a model with no gaps, as shown
in Fig. 5b. (This same array will be normalized and used later as a probability distribution function
for arm positions, as explained below.)

This distribution, shown in Fig. 5c, is convolved with the data array shown in Fig. 5b to generate a
function representing the goodness-of-fit between the observed data and the predicted data distribution.
The maximum point of the resultant distribution indicates the θ value which gives the best match
between the empirical distribution and the observed data.

One challenge in this determination of θ lies in the near-symmetry of the human body. Although the
expected value of the arm angles is less than 180 degrees, the observed distribution and its 180-degree
mirror image overlap significantly. Thus, particularly with noisy and incomplete data, it is possible
that the best-fit angle is actually rotated 180 degrees from the true θ direction. To stabilize this
variable, the secondary maximum in the θ likelihood function is designated as a second θ candidate.
The angular distance from the previous θ estimate to the two new θ candidates is compared and the
nearest neighbor selected as the first-order θ approximation. Correction of these reversals is discussed
in Sec. 4.6.

4.5 Second-Pass Theta Determination

Using this rough θ estimate, the next step is to determine the arm angles ϕL and ϕR, which will be used
for determining the final θ estimate. For this step, it is necessary to derive a probability distribution
function (PDF) for the arm positions from the observed data.

For this purpose, the shape profile model derived in the previous step can be used as a rough
approximation of the arm position PDF, as it exhibits many of the essential features of such a dis-
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(a) Maximum observed distance values in raw data array

0

100

200

300

400

-180 -90 0 90 180

R
aw

 d
is

ta
n

ce
 d

at
a 

(m
m

)

(b) Interpolated shape profile / arm angle probability distribution

0

0.005

0.01

0.015

0.02

0.025

-180 -90 0 90 180

A
rm

 P
ro

b
ab

ili
ty

(c) Empirically-derived theta-centric distance distribution

0

0.005

0.01

0.015

0.02

0.025

-180 -90 0 90 180

A
rm

 P
ro

b
ab

ili
ty

(d) Result of convolution with distance distribution

Secondary Theta Candidate

Optimal Theta

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

-180 -90 0 90 180

T
h

et
a 

L
ik

el
ih

o
o

d

(e) Masking functions for left and right arms

Selected Theta

Left Arm Right Arm

0

0.01

0.02

-180 -90 0 90 180

M
as

ki
n

g
 F

ilt
er

 V
al

u
e

(f) Probability functions for left and right arms

Left Arm
Right Arm

0

0.01

0.02

0.03

0.04

-180 -90 0 90 180S
in

g
le

-A
rm

 P
ro

b
ab

ili
ty

 F
u

n
ct

io
n

s

Figure 5: Intermediate steps in arm angle determination.
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tribution. For example, the presence of distant points indicates a high likelihood that an arm is in
that direction. Likewise, the presence of closer-than-average points indicates a low likelihood of an
arm being in that direction. Several points observed in a row give a higher-confidence estimate than a
single point, high or low, and points with no data provide no information about the presence or absence
of an arm. All of these features are found in both a theoretical PDF for arm distribution as well as
the data array derived above. Thus, by normalizing that array, we obtain a rough approximation of
that PDF.

The arm probability distribution in the radial array is then masked into two 180-degree regions
by using trapezoidal masking filters on either side of the selected θ direction as shown in Fig. 5e
(trapezoidal rather than rectangular masks were used for stability). These masks are multiplied with
the data array from Fig. 5b to generate the two probability distributions shown in Fig. 5f. The peaks
of these distributions are used as estimations of the left and right arm angles ϕL and ϕR, respectively.
A refined estimate of θ is then calculated as the midpoint between these angles.

Note that at this point, if desired, the shape profile can be revisited to calculate parameters such
as dL, dR, rarm, and rtorso. However, this step is not necessary if θ is the only parameter of interest.

4.6 Correction of Reversals

One of the greatest difficulties in determining the person’s facing direction lies in resolving the 180-
degree ambiguity between forward and backward orientation. The human shape is nearly symmetrical,
and even by eye it is sometimes quite difficult to discern front and back from laser scan data alone.

To resolve this ambiguity, we utilize the assumption that motion direction generally tends to coin-
cide with the forward orientation direction. We verified this assumption quantitatively using the data
recorded in the trials described in Sec. 5.

By running the basic human-tracking program without any reversal correction, we generated a
dataset of human positions and orientations. Reversals (defined as periods in which the directional
error was greater than 90 degrees) were identified by comparing these results with the ground-truth
data from the motion-capture system. A velocity distribution was then computed for each set of data
points. The results of this analysis are illustrated in Fig. 6.

An examination of this velocity distribution reveals that retrograde motion at low velocities is
common, probably due to a combination of actual motion, noise, and tracking lag of the particle filter;
however, higher retrograde velocities (above 500 mm/s) are almost nonexistent. Thus, any retrograde
motion larger than a threshold speed of 500 mm/s is interpreted as a reversal and corrected. A
time-averaged velocity estimate is used to minimize the influence of noise.

5 LABORATORY PERFORMANCE ANALYSIS

We performed an experiment in our laboratory to verify the accuracy of the human tracking system,
and to gather empirical data to refine the reversal-detection and theta-approximation functions in our
tracking algorithm.

5.1 Setup and Procedure

We used a Vicon motion-capture system to measure the accuracy of our laser tracking system. The
Vicon system uses several infrared cameras to track reflective markers with an accuracy of 1 mm at
a frequency of 60 Hz. Four SICK LMS-200 laser scanners were used, each set to a maximum range
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Figure 6: Distribution of forward velocity. The forward component of the velocity vector was calculated
for each time-step, and a frequency histogram was computed using bin sizes of 100 mm/s. Nearly every
observation with a forward velocity component below -500 mm/s was the result of a reversed direction
estimate.

of 8 m, a distance resolution of 10mm, an angular range of 180 degrees, an angular resolution of 0.5
degrees, and a scan frequency of 37.5 Hz.

The space used for our experiment was a four-meter-square area with the four laser scanners situated
outside the center of each edge of the square. The scan plane for each laser scanner was located at a
height of 85 cm from the ground. Additionally, numbered markers were placed on the floor, as depicted
in Fig. 7.

Five subjects were instructed to walk a series of patterns within the square. First, they stood
in the center of the square and turned in a circle, stopping at each of the four cardinal directions
for two seconds. Second, they walked figure-eight patterns, touching each of the numbered markers
in order, twice. Third, they walked in a circular path inside the square, twice clockwise and twice
counterclockwise. Finally, they walked randomly within the square until a total of two minutes had
elapsed.

Each subject wore four reflective markers for the Vicon system. One marker was placed on the
outside of each wrist, one on the subject’s sternum, and one in the middle of the subject’s back.

Raw data from each of the laser scanners was recorded, and the human tracking algorithm was
executed offline.

5.2 Results

To compare the motion-capture data with the laser-tracking data, the midpoint between each subject’s
sternum and back markers was used as an estimate of the subject’s body center. The absolute positional
error (in the x,y plane) and absolute angular error between the laser-tracking data and the motion-
capture data were then calculated for every time step in the laser-based tracking data.
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Figure 7: Floor layout for our laser tracking validation tests. Subjects were observed by four laser
range finders while walking several patterns within a 4m by 4m square.
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Figure 8: Tracking example from walking data. The dashed line represents ground-truth data from
the motion capture system, and the solid line represents laser tracking data.
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6 NATURAL WALKING EXPERIMENT

The average positional error over all five subjects was 4.6 cm ± 2.7 cm, and the average angular
error was 8.2 ± 13.8 degrees. During the 10 minutes of tracking, there were 9 brief 180-degree reversal
errors. One of these lasted for 2.2 seconds, and all others were automatically corrected within 0.2
seconds. The average error with those intervals are excluded from the data was 7.4 ± 7.9 degrees.

6 NATURAL WALKING EXPERIMENT

Although the trials in our motion capture room provided useful data for verifying the system’s accuracy,
it is difficult to simulate natural human walking motion in such a restricted space.

To verify that the system could also work with natural walking data, we ran several trials in an
open lobby, roughly 19 meters long and 8 meters wide. Experimental subjects were instructed to walk
through the area several times under a number of different conditions, e.g. individually, in groups,
wandering aimlessly, walking purposefully, making U-turns, and stopping to ask for directions.

Raw data from a network of six laser range finders monitoring this area was recorded for each trial,
which we processed offline to determine human positions.

6.1 Setup and Procedure

The area of interest in our experimental environment was a space within the lobby roughly 19 meters
long and 8 meters wide. We used six SICK LMS-200 laser scanners, set to scan an angular area of 180
degrees at a resolution of 0.5 degrees, covering a radial distance of 8 meters with a nominal system
error of ± 20 mm, providing readings of 361 data points every 26 ms. These were placed around the
periphery of the experimental area such that every point within the area of interest would be covered
by at least two sensors, to minimize occlusions.

The sensors were mounted at a uniform height of 90cm, slightly above waist-level for most subjects.
Tables, benches, and a small mobile robot were also placed within the walking area, but all of these
were below 90cm and thus not visible to the laser scanners.

Twelve adults participated as subjects in this experiment, although at any given time only a subset
of the group was walking within the sensor area. Six trials were conducted, and a total of 172 minutes
of raw sensor data was collected.

6.2 Results

Two aspects of the results of this experiment will be considered here. The first is the accuracy of our
method in tracking the subjects’ motions, and the second is the ability to interpret this data in terms
of actual body language and behavior.

6.2.1 Tracking Individuals

Quantifying the accuracy of this tracking technique is challenging due to the lack of more precise
measurement techniques to establish a ground truth for evaluation. A side-by-side visual comparison
of the raw data with the model-based estimate is perhaps the most effective indicator of the tracking
accuracy.

Figure 9 shows raw data from five frames taken during the course of a single stride, and compares
them with the model-based estimates for those time frames. Note that the swinging of the arm is
clearly visible from the data, and that the model follows this movement closely.
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Figure 9: Example of arm and torso movement during a single stride. Top: Five frames of raw data
from laser scanners taken at 320ms intervals. Bottom: Corresponding human shape model positions
for each frame.

Another indicator of the tracking accuracy of our technique is the resolution of movement that is
visible over time. Figure 10 shows a sample path walked by one of the subjects during our experiment.
The variations in θ due to the swinging of the arms and torso with each stride are quite clearly visible,
with little noise present. The more subtle change in angle as the subject walks around a curving path
is also quite clearly visible from the data.

These tracking results were then visually compared with video recorded during the experiment. The
subjects’ arm-swinging motions were observed to match with the data. The subject’s torso rotations
were not as exaggerated as the variations of θ in our model, which suggests the possibility that modeling
the motion of the arms during walking may offer a better estimate of torso orientation.

Interestingly, our tracking results for one trial indicated an asymmetry of motion, with one arm
moving much more than the other. Inspection of the video revealed that this was not a tracking error at
all, but an idiosyncrasy of the subject’s walking style, an observation which suggests the possibility of
using the information in this model for identifying individuals or making inferences about personality
or mood.

6.2.2 Observing Interactions

In addition to the model’s tracking accuracy, it is important to consider what information can be
observed regarding groups of people in social situations.

Figure 11 shows three scenes from our experiment. In the top scene, two subjects are seen walking
together. The model correctly shows that they are walking side-by-side, facing slightly towards each
other. It is possible that the relative directions in which people face while walking together might
include information about their social relationship.

In the center scene, one of the two subjects is asking a third subject for directions. The model
clearly shows the social situation, in which Subjects A and B are focusing their attention on subject
C. Subject A is standing back at a respectful distance, which seems to imply that A and B are not
part of the same group, or perhaps that their relationship is very formal.

The bottom scene illustrates the tracking of a group of subjects. Again, the group dynamic is
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Figure 10: Body angle tracking during 20 seconds of walking motion. Top: An overview of the walking
path in our lobby experiment shows the subject’s walking path, as well as close-up views of the subject’s
body position at several points along the path. Bottom: Observed body angle variations (in room-
centric coordinates). Periodic oscillations due to natural arm-swinging motion during each stride are
clearly visible.
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Figure 11: Scenes from the experiment.
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7 DISCUSSION

apparent, in that all of the subjects are listening to instructions from Subject A. (Note that the model
is unable to correctly determine the direction of Subject A because he is sitting and holding his arms
in an unusual position.)

All three of these examples illustrate information that could not have been determined from location
alone, and they suggest many possible types of social information that may be observable from this
data.

7 DISCUSSION

7.1 Performance Tuning

Many variables affect the performance of the system in terms of operating speed, position and angle
accuracy, smoothness of motion, and false or missed detections. By reducing the velocity noise added
during the motion model updates, for example, higher positional accuracy and smoother trajectories
can be attained, but the particle filter becomes less able to follow trajectories that change abruptly.

The number of particles is another variable. If a large number of particles are used, the particle
cloud’s trajectory stabilizes and becomes smoother, but this comes at the cost of an increased reaction
delay and increased computation time. Our algorithm uses the technique of KLD-sampling [17] to
adapt the number of particles based on the density of their distribution, down to a fixed minimum
limit.

7.2 Real-time Operation

Although the results presented in this paper were generated offline, this tracking software has primarily
been developed for use with real-time data streams. Using this software in a real-time system raises
the critical issue of processing speed. If the time required to process the data for one time step exceeds
the sampling interval of the sensors, then data will be lost and tracking accuracy will begin to decrease.

Here we present a performance analysis using a Windows XP system with a 2.4 GHz Intel Pentium
4 processor and 1 GB of RAM. The tracking software was implemented in Java and executing using
a Java 6 Virtual Machine. The tracking analysis was performed on a 4.5-minute data sample from a
shopping center, during which between 3 and 18 people were tracked simultaneously. Six sensors were
used in this experiment, with a frequency of 37.5 Hz, i.e. a sampling interval of 26.6 ms. A minimum
of 50 particles was used for each person.

To illustrate the importance of the speed improvement gained by performing the orientation cal-
culations separately from the particle filter, Fig. 12 compares our system’s performance against an
algorithm in which orientation calculations are integrated with the position calculations within the
particle filter.

This performance comparison illustrates two key points. The first point is that even with the
relatively slow Pentium 4 machine used here, it can be expected that 10-12 people can be tracked
without any loss of data, i.e., the tracking calculations can be completed within one data update
cycle. With 18 people, incoming data would be dropped, but every second data frame would still be
processed.

The second point is that, as stated in Sec. 3, the orientation computations are not very well-suited
for integration with the particle filter. Fig. 12 shows that the integrated algorithm requires about four
times the computation time of the two-step algorithm. In other words, the improved efficiency of the
two-step algorithm enables four times as many people to be tracked at once. To address the question of

This is an electronic version of an article published in Advanced Robotics [23]4, pp. 405-428, 2009.
Advanced Robotics is available online at : DOI: 10.1163/156855309X408754

18

http://www.tandfonline.com/doi/abs/10.1163/156855309X408754


7.3 Future Work 7 DISCUSSION

0 

1 

2 

3 

4 

5 

6 

7 

8 

0 2 4 6 8 10 12 14 16 18 20 

D
at

a 
U

p
d
at

e 
C

y
cl

es
 [

  
2

6
.6

 m
s]

 

Number of people being tracked 

Integrated Calculation 

Two-step calculation 

Figure 12: Variation of average computation time with number of humans being tracked. These results
indicate that 10-12 people can be tracked before computation time exceeds the sensor sampling interval
of 26.6 ms.

whether the choice of algorithm affects tracking accuracy, we repeated the analysis from Sec. 5.2 using
the integrated algorithm. Results were substantially worse than with the two-step algorithm. First,
many more reversals were observed with the integrated algorithm. Even correcting for the reversals,
the average angular error was still 25.2 degrees, as opposed to 7.4 degrees for the two-step algorithm.
This was most likely due to the issues stated in Sec 3, such as the non-smooth likelihood model and
high sensitivity to position error.

7.3 Future Work

The next step in this research is to use the generated position and orientation data to improve robotic
applications. Techniques should be developed for analyzing a person’s trajectory through a given
environment to learn about that person’s intentions. Information about the directions in which people
in a group are facing and their relative standing or walking positions may be helpful in identifying
social rank within that group. Trajectory and orientation data might be useful in identifying people
in a crowd who are interested in talking with the robot, or who have lost their way and need guidance.

Another possible area for future research is the addition of anatomically-based physical dynamics.
Rather than simply modeling motion using a geometric circular model, incorporation of arm swinging
and stride motion into the model could provide much more stable and accurate results. Currently, the
system is able to extract a person’s torso direction, which has been observed to oscillate from left to
right while walking. A more detailed dynamic model could incorporate walking speed and rhythm to
determine an even better estimate of the person’s direction of attention.

Finally, the integration of this system with other tracking technologies, such as a leg-based laser
tracking system, could provide a very robust estimate of a person’s pose and enable the interpretation
of more subtle expressions of body language.
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8 CONCLUSIONS

We have developed a system in which a network of laser range finders is used for tracking the positions
and orientations of people.

Comparison with results from a motion capture system verified the position accuracy to be 4.6 cm
± 2.7 cm and the orientation accuracy of to be 7.4 ± 7.9 degrees (excluding 180 degrees reversals).
The system is expected to perform without performance degradation while tracking 10-12 people in
real time on a Pentium 4 Windows PC.

This human tracking system has already been used extensively for providing ground-truth data and
tracking humans in several experiments and field trials. The system is also actively being used as a
platform for extracting useful social information from human movement for social robotics applications.
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