
Evaluation of prosodic and voice quality features on 
automatic extraction of paralinguistic information  

 
Carlos Toshinori Ishi*, Hiroshi Ishiguro*†, Norihiro Hagita* 

* Intelligent Robotics and Communication Labs. † Faculty of Engineering 
ATR Osaka University 

Kyoto, Japan Osaka, Japan 
carlos@atr.jp, ishiguro@ams.eng.osaka-u.ac.jp, hagita@atr.jp 

 
 Abstract - Aiming to realize a non-verbal communication 
between humans and robots, the use of acoustic parameters 
related with voice quality features, besides classical prosodic 
features, is proposed and evaluated for automatic extraction of 
paralinguistic information (intentions, attitudes, and emotions) in 
dialog speech.  Experimental results indicated that prosodic 
features were effective for detecting groups of paralinguistic 
information expressing specific functions (such as affirmation, 
denial, and asking for repetition), accounting for 61 % of the 
global identification rate.  Voice quality features were effective 
for detecting part of the paralinguistic information expressing 
emotions or attitudes (such as surprise, disgust and admiration), 
leading to 12 % improvement in the global identification rate.  
 
 Index Terms – Prosody, voice quality, paralinguistic 
information, non-verbal communication, automatic detection. 
 

I.  INTRODUCTION 

Recent works in communication robots have paid 
attention to non-verbal communication processing. In robot 
environments, there are cases where linguistic information 
recognition fails, but non-verbal information can be extracted, 
so that a communication robot could be constructed, even with 
the use of only non-verbal information.  

The information carried by speech in communication, can 
be categorized as linguistic (verbal) and paralinguistic (non-
verbal).  Linguistic information recognition would be a 
powerful function in interactive robots.  However, the 
performance of current speech recognition technologies, 
which are focused on linguistic information extraction, is 
restricted by many factors, such as intra-speaker, inter-
speaker, environment and context variabilities.  As linguistic 
information is a critical part of conversation, any failures in its 
recognition would give a negative impression, leading humans 
to be disappointed in interacting with robots.  Thus, we 
consider that the current technology for linguistic information 
recognition is not currently appropriate for interactive robots. 

To complement linguistic information recognition, non-
verbal information extraction could be used as an alternative 
technology.  Non-verbal information includes gestures and 
paralinguistic information.  Fig. 1 shows the block diagram of 
a communication robot regarding both verbal and non-verbal 
information.  Currently, there are many works related with 
gestures in human-robot interaction (e.g. [1]).  However, there 

are only a few, related with the use of paralinguistic 
information in robot communication [2].  In the present 
research, we focus on paralinguistic information extraction, 
having as a goal, a robot that can keep interaction with 
humans, even in the cases where speech recognition fails. 
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Fig. 1 Block diagram of a communication robot system considering verbal and 

non-verbal information. 
 
 The understanding of paralinguistic information becomes 
as important as linguistic information, especially in non-verbal 
communication using grunt-like utterances, such as “eh”, 
“ah”, and “un”.  Such utterances are frequently used to 
express a reaction to the interlocutor’s utterance in a dialog 
scenario, and usually express some intention, attitude, or 
emotion.  As there is little phonetic information represented 
by such grunt-like utterances, most of the paralinguistic 
information is likely represented by variations in prosodic or 
voice quality features. 
 Up till now, most works dealing with paralinguistic 
information extraction have focused only on prosodic features 
like fundamental frequency (F0), power and duration.  
However, when analysing natural conversational speech data, 
the presence of several voice qualities (caused by non-modal 
phonation, such as breathy, whispery, creaky and harsh [3]) is 
often observed, mainly in expressive speech utterances [4].  
For example, whispery and breathy voices are reported to 
correlate with the perception of fear [5], sadness, relaxation 
and intimate in English [6], and politeness in Japanese [7].  
Vocal fry or creaky voices appear in low tension voices 
correlating with sad, bored or relaxed voices [5,6], or in 
pressed voices expressing admiration or suffer [8].  Harsh and 
ventricular voices are reported to correlate with anger, 
happiness and stress [5,6]. 
 Further, in segments uttered by such voice qualities 
(caused by non-modal phonation types), F0 information is 
often missed by F0 extraction algorithms due to the irregular 
characteristics of the vocal fold vibrations.  Therefore, in such 



segments, the only use of prosodic features would not be 
enough for its complete characterization.  Thus, other acoustic 
features related with voice quality become important for a 
more suitable characterization of the speaking style.  
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Fig. 2 Block diagram of the proposed framework for paralinguistic 

information extraction. 
 

Fig. 2 shows the framework proposed for extraction of 
paralinguistic information, by using information of voice 
quality features, besides the classical prosodic features.  In 
previous works, we have proposed several acoustic parameters 
for representing the features of intonation and specific voice 
qualities [9-11].  In the present work, we extend and improve 
these acoustic parameters, and evaluate their performance in 
the automatic extraction of paralinguistic information.  

II.  DESCRIPTION OF THE SPEECH DATA FOR ANALYSIS AND 
EXPERIMENTAL SETUP 

 The utterances “e” and “un” (including variations such as 
“e”, “eh”, “ee”, “eeee”, “hee”, and “un”, “nnn”, “uhn”, etc.) 
are chosen here for analysis, because they are often used to 
express a reaction in Japanese conversational speech, and 
carry a large variety of paralinguistic information (PI) 
depending on its speaking style.  Possible PI (speech acts, 
attitudes or emotions) transmitted by varying the speaking 
styles of the utterances “e” and “un” are listed in Table I. 
 

TABLE I 
LIST OF PARALINGUISTIC INFORMATION CARRIED BY “E” AND “UN” 

Paralinguistic information (PI) Abreviation 
affirmation  aff 
agreement, understanding, consent agr 
backchannel (agreeable responses)  backch 
denial den 
filler (think)  filler 
embarrassment, hesitation  emb 
admiration adm 
envy env 
asking for a repetition  askrep 
surprise, amazement, astonishment surp 
unexpectedness unexp 
suspicion susp 
blame, criticism  blm 
disgust, dislike  disg 
dissatisfaction  dissat 

 

 The list of table I was obtained by referring to the list of 
speech acts annotated for the utterances “e” and “un” in the 
JST/CREST ESP Expressive Speech Database [12].  The 
items of the list have been obtained by free-text annotations of 
4 subjects, in “e” and “un” utterances appearing in natural 
conversations of the database.  The annotated words have 
been arranged by the 4 subjects for reducing redundancies.  
We do not guarantee that this list contains all the possible PI 

the utterances “e” and “un” can carry.  However, we 
considered that this list is rich enough for our purposes of 
human-robot communication.  
 Here, speech data is newly recorded in order to get a 
balance in terms of the PI carried by the utterance “e” or “un”.  
For that purpose, sentences are elaborated in such a way to 
induce the subject to produce a specific PI.  Two sentences are 
elaborated for each PI item of Table I. 
 The sentences are first read by one native speaker. These 
sentences will be referred as “inducing utterances”. Then, 
subjects are asked to produce a target reaction, i.e., utter in a 
way to express a determined PI, through the utterance “e”, 
after listening to each pre-recorded inducing utterance.  The 
same procedure was conducted for the utterance “un”.  Some 
short sentences are also elaborated to be spoken after the 
utterance “e” or “un”, in order to get a reaction as natural as 
possible.  However, a pause is requested between the 
utterance “e”/”un” and the following short utterance.  Further, 
the utterance “he” (with the aspirated consonant /h/ before the 
vowel /e/) is allowed to be spoken, if the subject judges that it 
is more appropriated for expressing some PI. 
 Utterances spoken by 6 subjects (2 male and 4 female 
speakers between 15 to 35 years old) are used for analysis and 
evaluation.  In addition to the PI list, speakers are also asked 
to utter “e”, “he” and “un” in a pressed voice quality, which 
frequently occurs in natural expressive speech [8], but was 
found more difficult to naturally occur in an acted scenario.   
 All the utterances “e” and “un” are manually segmented 
for subsequent analysis and evaluation. 

III.  PERCEPTUAL VOICE QUALITY LABELS AND RELATIONSHIP 
WITH PARALINGUISTIC INFORMATION 

Perceptual voice quality labels are annotated for two 
reasons.  One is to verify their effects on the expression of 
different PI.  Another is to use them as targets for evaluating 
the automatic detection of voice qualities.  The perceptual 
voice quality labels are annotated by one subject with 
experience in voice quality (the author oneself), according to 
the following criteria. 
 

• w: strong aspiration noise is perceived along the utterance. 
• a: strong aspiration noise is perceived in the syllable 

offset. 
• h: harsh voice (rasping sound, aperiodic noise) is 

perceived. 
• c: vocal fry or creaky voice is perceived. 
• p: pressed voice is perceived. 
 

A question mark “?” was added for each voice quality 
label, if their perception is not clear.  Fig. 3 and 4 show the 
distributions of the perceived voice quality categories for each 
PI item.  
 In Fig. 3, we can first observe that soft aspiration noise 
(w?) is perceived in some utterances of almost all PI items.  In 
contrast, strong aspiration noise (w), harsh or harsh whispery 
voices (h, hw) and syllable offset aspiration noise (a, a?) are 
perceived in PI items expressing some emotion or attitude 



(admiration, surprise, unexpectedness, suspicion, blame, 
disgust and dissatisfaction).  This indicates that the detection 
of these voice qualities (w, h, hw, a) could be useful for the 
identification of these expressive PI items. 
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Fig. 3 Distribution of perceived categories of aspiration noise and harsh 

voices, for each paralinguistic information item. 
 

 In Fig. 4, we can observe that creaky voices are perceived 
in filler, emb, adm and disg.  However, the additional 
perception of pressed voices is important to discriminate 
between emotionless fillers, and utterances expressing some 
emotion or attitude (admiration, disgust and embarrassment). 
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Fig. 4 Distribution of perceived categories of creaky voice and pressed voice, 

for each paralinguistic information item. 
 

IV.  ACOUSTIC PARAMETERS 

 In this section, we describe acoustic parameters that 
potentially represent the perception of prosodic and voice 
quality features, which are responsible for the discrimination 
of different speaking styles, and verify their performance in 
automatic detection.  

A. Acoustic parameters related with prosodic features: 
F0move and duration 
 In [9], a set of parameters was proposed for describing the 
intonation of phrase finals (phrase final syllables), based on 
F0 and duration information.  Here, we use a similar set of 
parameters with some modifications, for the monosyllabic “e” 
and “un” utterances. 
 For the pitch-related parameters, F0 is first estimated 
based on the normalized autocorrelation function of the LPC 
inverse-filtered residue of the pre-emphasized speech signal.  
Details about the F0 estimation procedure can be found in [9].  
All F0 values are converted to the musical (log) scale before 
any subsequent processing.  The expression (1) shows a 
formula to produce F0 in semitone intervals. 
 

 F0[semitone] = 12 * log2 (F0[Hz])                              (1) 
 

 In [9], each syllable is broken in two segments of equal 
length, and representative F0 values are extracted for each 

segment.  Several candidates for the representative F0 values 
have been tested in [9].  Here, we use the ones that best 
matched with perceptual scores of the F0 movements.  For the 
first segment, an average value is estimated using F0 values 
within the segment (F0avg2a).  And for the second segment, a 
target value is estimated as the F0 value at the end of the 
segment of a first order regression line of F0 values within the 
segment (F0tgt2b).  A variable called F0move is then defined 
as the difference between F0tgt2b and F0avg2a, quantifying 
the amount and direction of F0 movement within the syllable.  
F0move is positive for rising F0 movements, and negative for 
falling movements.  Details about the evaluation of these 
parameters can be found in [9]. 
 The representation of F0 movements by F0move is valid 
when F0 only rises, only falls, or does not change within a 
syllable.  This condition is true for most cases in Japanese 
syllables.  However, there are cases where F0 falls down and 
then rises up within the same syllable.  A fall-rise intonation is 
commonly used in “un” utterances for expressing a denial. 
 In the present work, we proposed a method for detecting 
fall-rise movements, by searching for negative F0 slopes in 
the syllable nucleus, and positive F0 slopes in the syllable end 
portion.  Here, syllable nucleus is defined as the 25 % to 75 % 
center portion of the syllable duration, while the syllable end 
is defined as the 40 % to 90 % portion of the syllable.  The 
initial and final portions of the syllable are removed from the 
slope searching procedure, in order to avoid misdetection of 
F0 movements due to co-articulation effects. 
 If a fall-rise movement is detected, the syllable is divided 
in three portions of equal length.  The representative F0 value 
of the first portion is estimated as the average F0 value 
(F0avg3a).  For the second portion, the minimum F0 value 
(F0min3b) is estimated.  Finally, for the last portion, a target 
value (F0tgt3c) is estimated in the same way of F0tgt2b.  
Then, two F0move values are estimated.  F0move = F0min3b 
– F0avg3a, representing the falling degree, and F0move = 
F0tgt3c – F0min3b, representing the rising degree. 
 Fall-rise tones were correctly detected in all “un” 
utterances expressing denial.  It was also detected in two “e” 
utterances.  However, in these two cases, the F0move values 
of the falling movement were smaller than 2 semitones, 
indicating a slight falling movement.  In contrast, the F0move 
values for the “un” utterances expressing denial were all 
larger than 3 semitones. 
 For utterance duration, the manually segmented 
boundaries could be straightly used, since the utterances are 
monosyllabic.  However, as the manual segmentation may 
contain some silence (non-speech) portions close to the 
segmentation boundaries, an automatic procedure is further 
conducted, by estimating the maximum power of the syllable, 
and moving the boundaries until the power becomes 20 dB 
weaker than the maximum power.  The newly segmented 
boundary intervals are used as segmental duration. 

B. Detection of vocal fry (creaky voice): PPw, IFP, IPS 
 Creaky voice or vocal fry is characterized by the 
perception of very low fundamental frequencies, where 
individual glottal pulses can be heard, or by a rough quality 



caused by an alternation in amplitude, duration or shape of 
successive glottal pulses.   
 Here, we use the algorithm proposed in [10] for detection 
of vocal fry segments.  A simplified block diagram of the 
detection algorithm is shown in Fig. 5.  The algorithm first 
searches for power peaks in a “very short-term” power 
contour (obtained by using 4 ms frame length each 2 ms), 
which reflects the impulse-like properties in very low 
fundamental frequencies, characteristic of vocal fry signals. 
Then, it checks for constraints of periodicity and similarity 
between successive glottal pulses.  The algorithm depends 
basically on three parameters: power thresholds for detection 
of power peaks (PPw), intra-frame periodicity (IFP), which is 
based on the normalized autocorrelation function, and inter-
pulse similarity (IPS), which is estimated as a cross-
correlation between the speech signals around the detected 
peaks.  Here, vocal fry segments are detected by using PPw 
larger than 7 dB, IFP smaller than 0.8, and IPS larger than 
0.6.  Details about the parameters can be found in [10]. 
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Fig. 5 Simplified block diagram of the vocal fry detection. 

C. Detection of pressed voice: H1’-A1’ 
 Lax and pressed voices are both present in the creaky 
voice utterances detected by the method described in the 
previous section.  Lax creaky voices appear in relaxed voices 
indicating boredom or sadness [6,7].  On the other hand, 
pressed creaky voices indicate strong attitudes/feelings of 
admiration or disgust [8].  Therefore, detection of pressed 
voices is important for PI discrimination. 
 The production mechanism of pressed voice is not clearly 
explained yet, but it possibly has features similar to “tense 
voice” [13].  A difference between “tense voice” and “lax 
voice” is reported to appear in the spectral tilt, since in tense 
voice, the glottal excitations become more impulse-like, and 
the higher frequency components are emphasized in relation 
to the fundamental frequency component.  Acoustic 
parameters like H1-H2 and H1-A1 are proposed to reflect the 
effects of spectral tilt [13].  H1 is the amplitude power of the 
first harmonic (fundamental frequency), H2 is the amplitude 
power of the second harmonic, and A1 is the amplitude power 
of the harmonic closest to the first formant. 
 Here, we take these acoustic parameters into account.  
However, in creaky or harsh voices, the irregularities in 
periodicity cause disturbances in the harmonic structure of 
their spectrum, so that it becomes difficult to extract harmonic 
components from the spectrum.  In the present work, if 
periodicity is not detected, instead of H1, we use the 
maximum peak power of a low frequency band of 100 to 200 
Hz (H1’).  Also, as an automatic formant extraction is 
difficult, instead of A1, we use the maximum peak power in 
the frequency band of 200 to 1200 Hz (A1’), where the first 
formant is likely to appear.  If periodicity is detected, H1’ is 

equalized to H1.  Preliminary experiments indicates pressed 
voice can be detected, when H1’-A1’ is smaller than -15 dB, 
for each frame.  

D. Detection of aspiration noise: F1F3syn, A1-A3 
 Aspiration noise refers to turbulent noise due to an air 
escape at the glottis, occurring in whispery and breathy 
voices.  Although there is a distinction between whispery and 
breathy voices from a physiological viewpoint [3], a 
categorical classification of voices in whispery or breathy is 
difficult in both acoustic and perceptual spaces [14]. Further, 
aspiration noise is also often perceived in harsh voices, which 
is called harsh whispery voice in [3].  In the present work, we 
use a degree of aspiration noise as indicative of such voice 
qualities.  
 The aspiration noise detection algorithm is based on the 
proposed in [11].  The algorithm depends basically on two 
parameters, shown in Fig. 6.  The main parameter, called 
F1F3syn, is a measure of synchronization (using a cross-
correlation measure) between the amplitude envelopes of the 
signals obtained by filtering the input speech signal in two 
frequency bands, one around the first formant (F1) and 
another around the third formant (F3).  If aspiration noise is 
absent, F1F3syn has values close to 1, while if it is present, 
F1F3syn has values closer to 0.  The second parameter, called 
A1-A3, is a measure of the difference (in dB) between the 
powers of F1 and F3 bands.  This parameter is used to 
constraint the validity of the F1F3syn measure, when the 
power of F3 band is too lower than that of F1 band, so that 
aspiration noise could not be clearly perceived.  F1 band is set 
to 100 ~ 1500 Hz, while F3 band is set to 1800 ~ 4500 Hz.  
More details about the evaluation of the method can be found 
in [11].  Here, aspiration noise is detected when F1F3syn is 
smaller than 0.4 and A1-A3 is smaller than 25 dB. 
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Fig. 6 Simplified block diagram of the acoustic parameters for aspiration noise 

detection. 

E. Detection of harsh and/or whispery voices 
 As shown in Fig. 3, there is no clear distinction in 
functionality between harsh, harsh whispery and whispery 
voices (h, hw, w, a).  Thus, all these voice qualities will be 
treated as one category, hereinafter. 
 The aperiodicity, characteristic of harsh voices, is here 
detected when neither periodicity nor creaky voice is detected.  
Also, the initial and final 3 frames of each utterance are 
eliminated, for avoiding the effects of F0 disturbances at the 
onset and offset of the syllables. 

 F. Evaluation of automatic detection of voice qualities 
 Fig. 7 shows a summary of the results for automatic 
detection of the voice qualities discussed in the previous 
sections. 
 The detection of creaky voice is evaluated by an index 
called VFR (Vocal Fry Rate), defined as the duration of the 



segment detected as vocal fry (VFdur) divided by the total 
duration of the utterance.  Fig. 7 shows the results of detection 
of creaky segments, by using a criterion of VFR > 0.1.  We 
can note that all creaky segments are correctly detected (about 
90% for c, c?), with only a few insertions (non c). 
 For evaluating pressed voice detection, an index called 
PVR (Pressed Voice Rate) is defined as the ratio between the 
duration of the segment detected as pressed (PVdur), by the 
utterance duration.  An utterance is detected as pressed, if 
PVR is larger than 0.1, and PVdur is larger than 100 ms, 
indicating that the segment has to be long enough to be 
perceived as pressed.  69 % of the pressed voice utterances 
were correctly identified in (p,pc, p?).  Among them, most “e” 
utterances were correctly identified, while the detection failed 
in most of “un” utterances.  This is probably because the nasal 
formant (around 100 to 300 Hz) increases the spectral power 
in the lower frequencies, consequently rising the H1’-A1’ 
value.  More robust acoustic features have to be investigated 
for detecting pressed voice in nasalized vowels. 
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Fig. 7 Results of automatic detection of voice qualities, for each perceived 

category. 
 

 As in the previous voice qualities, an index called ANR 
(Aspiration Noise Rate) is defined as the duration of the 
segment detected as aspirated (ANdur) divided by the total 
duration of the utterance. Utterances containing aspiration 
noise are detected by using a criterion of ANR > 0.1.  Most of 
the utterances where strong aspiration noise was perceived (w) 
could be correctly detected (81%).  However only a few 
utterances could be detected by using ANR, where aspiration 
noise was perceived in the syllable offset (a? and a), as shown 
in Fig. 7.  This is because these syllable offset aspirations are 
usually unvoiced, and very short in duration.  Other methods 
have to be evaluated for the detection of such aspirated 
syllables. 
 Finally, an index called HWR (Harsh Whispery Rate) is 
defined as the summation of APdur (duration of the segment 
detected as aperiodic) and ANdur, divided by the utterance 
duration.  73 % of the utterances perceived as harsh and/or 
whispery (h,h?,hw) could be detected by using HWR > 0.1, 
and only a few insertion errors were obtained (non h), as 
shown in Fig. 7. 

V.  IDENTIFICATION OF PARALINGUISTIC INFORMATION BASED 
ON PROSODIC AND VOICE QUALITY FEATURES 

 In 32 of the total of 363 utterances, F0move could not be 
estimated due to missing F0 values.  These missing values are 
due to non-modal phonations causing irregularities in the 
periodicity of the vocal folds.  Fig. 8 shows the distributions 

of the prosodic features (F0move vs. duration), excluding the 
utterances where F0move could not be obtained due to 
missing F0 values in non-modal phonations, and the ones 
where fall-rise intonation was detected. 
 Thresholds for F0move and duration are set, based on a 
preliminary evaluation of classification trees for 
discriminating the present PI.  A threshold of -3 semitones is 
set for F0move to discriminate falling tones (Fa), while a 
threshold of 1 semitone is set for rising tones (Rs).  Utterances 
where F0move is between -3 and 1 semitone are considered as 
flat tones (Ft).  The 32 utterances, where F0move could not be 
obtained, are also treated as flat tones in the evaluation of 
automatic detection.  Two thresholds are also set for duration.  
Utterances shorter than 0.36 seconds will be called short (S), 
while utterances with duration between 0.36 and 0.6 seconds 
will be called long (L).  Utterances longer than 0.6 seconds 
will be called extremely long (E).  
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Fig. 8 Distribution of the prosodic features (F0move vs. duration) for each PI. 
 

 Table II show the results for automatic detection of PI 
items based on the prosodic and voice quality parameters 
described in Section IV.  The automatic identification of all PI 
items is difficult since many PI items share the same speaking 
styles.  For example, there is little or no distinction in 
speaking style between affirmation and agreement, or between 
surprise and unexpectedness.  Thus, the PI items which share 
similar speaking styles and which carry similar meanings in 
communication, are grouped for evaluating the automatic 
detection. For example, affirmation, agreement and 
backchannel are positive reactions, while suspicion, blame, 
disgust and dissatisfaction, are all negative reactions.  The 
resulting seven PI groups are separated by horizontal lines in 
Table II.  The detection rate in the last column of Table II is 
calculated for each PI item, by counting the utterances 
belonging to their most representative speaking style. 
 Results indicate detection rates higher than 90 %, for 
positive reactions (aff, agr, backch), denial, filler and asking 
for repetition.  Among the positive reactions, affirmation tends 
to be uttered by short fall intonation (SFa), while longer 
utterances (LFa) are more likely to appear when expressing 
agreement and backchannels. The fall-rise tone (FaRs) 



detection was enough for the identification of denial.  
Extremely long fall or flat tones (EFa, EFt) were effective to 
identify fillers. 
 Short rise tones (SRs) identifies asking for repetition, 
surprise, or unexpectedness.  Part of the utterances in SRs 
could be identified as surp/unexp by the detection of strong 
aspiration noise or harshness (numbers within the parenthesis 
in Table II).  However, part of the utterances in surp/unexp 
has similar speaking styles with askrep.  In these cases, the 
context has to be taken into account for discrimination. 
 The big overlap in the rising tones shown in Fig. 8, 
resulted in lower detection rates for surp/unexp, susp/blm/ 
disg/dissat, and adm/env, as shown in the bottom half of Table 
II.  Although harsh and/or whispery voice quality is more 
indicative of negative reactions, rather than admiration or 
envy, other acoustic parameters related with brightness could 
be useful for discriminating them.  Most of the detection 
errors in the rising tones are thought to be due to context 
dependency.  However, part of these detection errors could be 
reduced, by improving the detection of voice quality features.   
 Pressed voice detection (PV) was effective for identifying 
part of utterances expressing admiration.  The discrimination 
of PV utterances appearing in disg and emb could need 
context information.  However, it was observed that most 
utterances in adm are “he”, while most utterances in disg and 
emb are “e”. 
 The overall detection rate using these simple thresholds 
for discrimination of the seven PI groups shown in Table II 
was 73 %.  Regarding the contribution of the acoustic 
parameters used in the present work, 61 % of the correct 
identification was due to the only use of prosodic features, 
while 12 % was due to voice quality parameters.  

VI.  CONCLUSION 

   We proposed and evaluated the use of prosodic and voice 
quality features for automatic extraction of paralinguistic 
information in dialog speech.  We showed that prosodic 
features are effective to detect paralinguistic information items 
expressing some functions, such as affirmation, denial, filler, 
and asking for repetition.  Voice quality features were shown 
to be effective for identifying part of paralinguistic 
information items expressing some emotion or attitude 

(surprise/ unexpectedness, suspicion/blame/disgust/ 
dissatisfaction, and admiration/envy).  
 Improvements in the detection of voice qualities 
(harshness, pressed voices in nasalized voices, and syllable 
offset aspiration noise) can still improve the detection rate of 
paralinguistic information items expressing 
emotions/attitudes. 
 Future works are improvement of voice quality detection, 
investigations about how to deal with context information, and 
evaluation in a human-robot interaction scenario.  
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TABLE II 
AUTOMATIC DETECTION OF PARALINGUISTIC INFORMATION BASED ON PROSODIC AND VOICE QUALITY FEATURES. NUMBERS WITHIN PARENTHESIS INDICATE 

UTTERANCES WHERE HARSH AND/OR WHISPERY VOICE IS DETECTED (HWR > 0.1). PV IDICATES DETECTED PRESSED VOICE UTTERANCES (PVR > 0.1). 
  total FaRs SFa LFa EFa SFt LFt EFt SRs LRs ERs PV Detection rate

aff 25   24     1             96 % 
agr 22   20 2                 100 % 

backch 20   9 11                 100 % 
den 15 15                     100 % 
filler 18       5     13         100 % 
emb 31       7   2 12     7 3 67 % 

askrep 26               24 (1) 1     92 % 
surp 23         4 (1) 0 (1)   9 (4) 0 (3) 1   39 % 

unexp 23   1     3 (1)     11 (5) 1 (1)     39 % 
susp 28         0 (1) 0 (1) 0 (1) 3 (2) 11 (2) 7   54 % 
blm 23         1 (3) 0 (2) 1 (2) 3 (4) 6 (1)     48 % 
disg 31         1 1 2(1) 4 9 (5) 5 3 58 % 

dissat 24       1 1   3 (1) 1 8 (2) 5 (2)   46 % 
adm 33       1   2     4 (1) 11 (1) 13 76 % 
env 21           1 1 1 4 (1) 13   62 % 


